Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substrate allyl alcohol

The Sharpless-Katsuki asymmetric epoxidation reaction (most commonly referred by the discovering scientists as the AE reaction) is an efficient and highly selective method for the preparation of a wide variety of chiral epoxy alcohols. The AE reaction is comprised of four key components the substrate allylic alcohol, the titanium isopropoxide precatalyst, the chiral ligand diethyl tartrate, and the terminal oxidant tert-butyl hydroperoxide. The reaction protocol is straightforward and does not require any special handling techniques. The only requirement is that the reacting olefin contains an allylic alcohol. [Pg.50]

The Sharpless epoxidation is a popular laboratory process that is both enantioselective and catalytic in nature. Not only does it employ inexpensive reagents and involve various important substrates (allylic alcohols) and products (epoxides) in organic synthesis, but it also demonstrates unusually wide applicability because of its insensitivity to many aspects of substrate structure. Selection of the proper chirality in the starting tartrate esters and proper geometry of the allylic alcohols allows one to establish both the chirality and relative configuration of the product (Fig. 4-1). [Pg.196]

In situ EPR experiments in the presence of different substrates (allyl alcohol, benzene, phenol, or toluene) reveal that type A species is involved in epoxidation reactions. Species B is more active than A in ring hydroxylation reactions. A comparison of the toluene results with those of phenol/benzene suggests that while species B is involved in ring hydroxylations, the A-type species are possibly involved in... [Pg.198]

Furthennore, Fu extended the substrate scope to allylic alcohols and showed that substrates bearing a substituent geminal to the hydroxy group, trans-cmasmyl type substrates, allylic alcohols with a substituent syn to the hydroxy group and tetrasub-stituted allylic alcohols could be resolved with moderate to good selectivities (i = 4.7-64) (Scheme 6) [82],... [Pg.245]

This section presents a summary of the currently preferred conditions for performing Ti-catalyzed asymmetric epoxidations and is derived primarily from the detailed account of Gao et al. [4]. We wish to draw the reader s attention to several aspects of the terminology used here and throughout this chapter. The terms Ti-tartrate complex and Ti-tartrate catalyst are used interchangeably. The term stoichiometric reaction refers to the use of the Ti-tartrate complex in a stoichiometric ratio (100 mol %) relative to the substrate (allylic alcohol). The term catalytic reaction (or quantity) refers to the use of the Ti-tartrate complex in a catalytic ratio (usually 5-10 mol %) relative to the substrate,... [Pg.235]

Palladium-catalyzed nucleophilic substitution reactions of allylic substrates have become useful in organic synthesis. As allylic substrates, allyl alcohols, halides, carboxylates, phosphates or vinyl epoxides can be utilized. [Pg.85]

An example of a suitable biocatalyst is Geotrichum candidum, harboring both an oxidizing and a reducing enzyme activity. Table 16.2-14 shows the catalytic performance of Geotrichum candidum towards different substrates12201 when the biocatalyst is incubated for 24 h with 27 mM substrate. Allyl alcohol effectively shifts the stereoselectivity of the reduction. It is presumed to inhibit enzyme(s) that reduce aryl... [Pg.1157]

Beller and coworkers [142] broadened these investigations to include several other terminal-functionalized and nonfunctionalized olefins as substrates (allyl alcohols, homoallyl alcohols, allylamines, homoallylamines, vinyl cyclohexane, 3-arylprop-l-enes). For example, in a basic medium, Fe3(CO)j2 converted 1-octene cleanly into 2-octene (Scheme 5.31). Moreover, Z-2-octene was converted into the corresponding -isomer. Temperatures of80-100 °C were required to achieve nearly quantitative yields. [Pg.407]

The catalyst is sensitive to pre-existing chirality in the substrate the expoxidation of racemic secondary allylic alcohols often proceeds tepidly with only one of the enantiomers ... [Pg.125]

The AE reaction has been applied to a large number of diverse allylic alcohols. Illustration of the synthetic utility of substrates with a primary alcohol is presented by substitution pattern on the olefin and will follow the format used in previous reviews by Sharpless but with more current examples. Epoxidation of substrates bearing a chiral secondary alcohol is presented in the context of a kinetic resolution or a match versus mismatch with the chiral ligand. Epoxidation of substrates bearing a tertiary alcohol is not presented, as this class of substrate reacts extremely slowly. [Pg.54]

This class of substrate is the only real problematic substrate for the AE reaction. The enantioseleetivity of the AE reaction with this class of substrate is often variable. In addition, rates of the catalytic reactions are often sluggish, thus requiring stoichiometric loadings of Ti/tartrate. Some representative product epoxides from AE reaction of 3Z-substituted allyl alcohols are shown below. [Pg.55]

As with i -substituted allyl alcohols, 2,i -substituted allyl alcohols are epoxidized in excellent enantioselectivity. Examples of AE reactions of this class of substrate are shown below. Epoxide 23 was utilized to prepare chiral allene oxides, which were ring opened with TBAF to provide chiral a-fluoroketones. Epoxide 24 was used to prepare 5,8-disubstituted indolizidines and epoxide 25 was utilized in the formal synthesis of macrosphelide A. Epoxide 26 represents an AE reaction on the very electron deficient 2-cyanoallylic alcohols and epoxide 27 was an intermediate in the total synthesis of (+)-varantmycin. [Pg.56]

Sharpless and Masumune have applied the AE reaction on chiral allylic alcohols to prepare all 8 of the L-hexoses. ° AE reaction on allylic alcohol 52 provides the epoxy alcohol 53 in 92% yield and in >95% ee. Base catalyze Payne rearrangement followed by ring opening with phenyl thiolate provides diol 54. Protection of the diol is followed by oxidation of the sulfide to the sulfoxide via m-CPBA, Pummerer rearrangement to give the gm-acetoxy sulfide intermediate and finally reduction using Dibal to yield the desired aldehyde 56. Homer-Emmons olefination followed by reduction sets up the second substrate for the AE reaction. The AE reaction on optically active 57 is reagent... [Pg.59]

Desymmetrization of meso-bis-allylic alcohols is an effective method for the preparation of chiral functionalized intermediates from meso-substrates. Schreiber et al has shown that divinyl carbonyl 58 is epoxidized in good enantioselectivity. However, because the product epoxy alcohols 59 and 60 also contain a reactive allylic alcohol that are diastereomeric in nature, a second epoxidation would occur at different rates and thus affect the observed ee for the first AE reaction and the overall de. Indeed, the major diastereomeric product epoxide 59 resulting from the first AE is less reactive in the second epoxidation. Thus, high de is easily obtainable since the second epoxidation removes the minor diastereomer. [Pg.60]

In 1963, Dauben and Berezin published the first systematic study of this syn directing effect (Scheme 3.15) [37]. They found that the cyclopropanation of 2-cyclohexen-l-ol 32 proceed in 63% yield to give the syn isomer 33 as the sole product. They observed the same high syn diastereoselectivity in a variety of cyclic allylic alcohols and methyl ethers. On the basis of these results, they reasonably conclude that there must be some type of coordinative interaction between the zinc carbenoid and the substrate. [Pg.100]

This chiral modifier provides one of the only methods for selective cyclopropa-nation of substrates which are not simple, allylic alcohols. In contrast to the catalytic methods which will be discussed in the following section, the dioxaborolane has been shown to be effective in the cyclopropanation of a number of allylic ethers [67]. This method has also been extended to systems where the double... [Pg.119]

Denniatk and co-wotkets teporied tlie brst example in 1990 [16], using substrates 1, s7ntliesized Grom adiital allylic alcohols and tead dy ava dable optically active amine auxdiaries. Substrates 1 were tlien employed in coppet-niediaied allylic substitution reactions, as shown in Sdienie 8.4. [Pg.263]

With respect to the olefinic substrate, various functional groups are tolerated, e.g. ester, ether, carboxy or cyano groups. Primary and secondary allylic alcohols, e.g. 14, react with concomitant migration of the double bond, to give an enol derivative, which then tautomerizes to the corresponding aldehyde (e.g. 15) or ketone ... [Pg.156]

The acid-catalyzed addition of an aldehyde—often formaldehyde 1—to a carbon-carbon double bond can lead to formation of a variety of products. Depending on substrate structure and reaction conditions, a 1,3-diol 3, allylic alcohol 4 or a 1,3-dioxane 5 may be formed. This so-called Prins reaction often leads to a mixture of products. [Pg.232]

The initial step is the protonation of the aldehyde—e.g. formaldehyde—at the carbonyl oxygen. The hydroxycarbenium ion 6 is thus formed as reactive species, which reacts as electrophile with the carbon-carbon double bond of the olefinic substrate by formation of a carbenium ion species 7. A subsequent loss of a proton from 7 leads to formation of an allylic alcohol 4, while reaction with water, followed by loss of a proton, leads to formation of a 1,3-diol 3 " ... [Pg.233]

The oxidation of alkenes and allylic alcohols with the urea-EL202 adduct (UELP) as oxidant and methyltrioxorhenium (MTO) dissolved in [EMIM][BF4] as catalyst was described by Abu-Omar et al. [61]. Both MTO and UHP dissolved completely in the ionic liquid. Conversions were found to depend on the reactivity of the olefin and the solubility of the olefinic substrate in the reactive layer. In general, the reaction rates of the epoxidation reaction were found to be comparable to those obtained in classical solvents. [Pg.233]

In light of the previous discussions, it would be instructive to compare the behavior of enantiomerically pure allylic alcohol 12 in epoxidation reactions without and with the asymmetric titanium-tartrate catalyst (see Scheme 2). When 12 is exposed to the combined action of titanium tetraisopropoxide and tert-butyl hydroperoxide in the absence of the enantiomerically pure tartrate ligand, a 2.3 1 mixture of a- and /(-epoxy alcohol diastereoisomers is produced in favor of a-13. This ratio reflects the inherent diasteieo-facial preference of 12 (substrate-control) for a-attack. In a different experiment, it was found that SAE of achiral allylic alcohol 15 with the (+)-diethyl tartrate [(+)-DET] ligand produces a 99 1 mixture of /(- and a-epoxy alcohol enantiomers in favor of / -16 (98% ee). [Pg.296]

N,O-acetal intermediate 172, y,<5-unsaturated amide 171. It is important to note that there is a correspondence between the stereochemistry at C-41 of the allylic alcohol substrate 173 and at C-37 of the amide product 171. Provided that the configuration of the hydroxyl-bearing carbon in 173 can be established as shown, then the subsequent suprafacial [3,3] sigmatropic rearrangement would ensure the stereospecific introduction of the C-37 side chain during the course of the Eschenmoser-Claisen rearrangement, stereochemistry is transferred from C-41 to C-37. Ketone 174, a potential intermediate for a synthesis of 173, could conceivably be fashioned in short order from epoxide 175. [Pg.607]

The metal catalyst is not absolutely required for the aziridination reaction, and other positive nitrogen sources may also be used. After some years of optimization of the reactions of alkenes with positive nitrogen sources in the presence of bromine equivalents, Sharpless et al. reported the utility of chloramine-T in alkene aziridinations [24]. Electron-rich or electron-neutral alkenes react with the anhydrous chloramines and phenyltrimethylammonium tribromide in acetonitrile at ambient temperature, with allylic alcohols being particularly good substrates for the reaction (Schemes 4.18 and 4.19). [Pg.125]

The reason for the efficient epoxidation of explicitly allylic alcohols with this system can be found in the strong associative interactions occurring between the substrate and the catalyst. The [Ti(tartrate)(OR)2]2 dimer 1, which is considered to be the active catalyst in the reaction, will generate structure 2 after the addition of... [Pg.188]

Ten years after Sharpless s discovery of the asymmetric epoxidation of allylic alcohols, Jacobsen and Katsuki independently reported asymmetric epoxidations of unfunctionalized olefins by use of chiral Mn-salen catalysts such as 9 (Scheme 9.3) [14, 15]. The reaction works best on (Z)-disubstituted alkenes, although several tri-and tetrasubstituted olefins have been successfully epoxidized [16]. The reaction often requires ligand optimization for each substrate for high enantioselectivity to be achieved. [Pg.318]


See other pages where Substrate allyl alcohol is mentioned: [Pg.127]    [Pg.355]    [Pg.293]    [Pg.439]    [Pg.127]    [Pg.355]    [Pg.293]    [Pg.439]    [Pg.351]    [Pg.225]    [Pg.244]    [Pg.244]    [Pg.57]    [Pg.58]    [Pg.105]    [Pg.119]    [Pg.126]    [Pg.214]    [Pg.255]    [Pg.137]    [Pg.297]    [Pg.303]    [Pg.434]    [Pg.189]   
See also in sourсe #XX -- [ Pg.1494 ]




SEARCH



Alcohol substrate

Allylic Alcohol Substrates

Allylic Alcohol Substrates

Allylic substrates

Amino alcohols via cyclization of allylic substrates

© 2024 chempedia.info