Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Technetium pertechnetic acid

Technetium(VII) oxide is a yellow solid, crystallizing in the orthorhombic space group D2)l15-Pbca and is one of the few known transition metal oxides having a molecular structure in the solid state.10 It melts at 119.5° and boils at 310.6° It dissolves in water, forming pertechnetic acid. The pertechnetate ion is known to inhibit the corrosion of steel. TechnetiumfVII) oxide is an excellent starting material for preparing pure technetium metal. [Pg.158]

Technetium tetrabromide, TcBr4, was synthesized analogously to rhenium tetrabromide [107] by reduction of pertechnetic acid with a 46 % solution of hydrobromic acid. This procedure was repeated four times. An unstable brown-red compound was obtained which rapidly hydrolyzed in moist air. The bromine analysis was always low due to slow spontaneous loss of bromine. TcBr4 dissolves in ethanol and acetone and forms complexes with 1,2-bis(diphenyl-phosphino)ethane and triphenylphosphine [89]. [Pg.122]

Technetium is a silvery-gray metal that tarnishes slowly in moist air. The common oxidation states of technetium are +7, +5, and +4. Under oxidizing conditions technetium (Vll) will exist as the pertechnetate ion, TcOr-. The chemistry of technetium is said to be similar to that of rhenium. Technetium dissolves in nitric acid, aqua regia, and cone, sulfuric acid, but is not soluble in hydrochloric acid of any strength. The element is a remarkable corrosion inhibitor for steel. The metal is an excellent superconductor at IIK and below. [Pg.107]

Technetium-99m disofenin is used for hepatobiliary imaging. Disofenin (2,6-diisopropylphenylcarbamoyhnethyliminodiacetic acid) is the active ingredient. Product formation is accompHshed by addition of up to 3.7 GBq (100 mCi) of Tc pertechnetate. [Pg.484]

Chemical separation of technetium in soils is not easy, but it is fairly well-known that under aerobic conditions pertechnetate Tc(YII) is readily transferred to plants while under anaerobic conditions insoluble TcCh (or its hydrate) is not transferred to them. Even under aerobic conditions, however, the transfer rate decreases with time [28], indicating that soluble pertechnetate changes to insoluble forms by the action of microorganisms which produce a local anaerobic condition around themselves [29,30]. Insoluble technetium species may be TcOz, sulfide or complexes of organic material such as humic acid. [Pg.29]

In a recent study of the complexation of technetium with humic acid (HA) Sekine et al. [34,35] obtained interesting results which show competition between Tc,v-0(0H) i precipitate formation and Tcin-HA precipitate formation during a reduction process of pertechnetate with Sn2+. A weighable amount of... [Pg.29]

Technetium is usually supplied in the form of heptavalent pertechnetate. Consequently, the syntheses of technetium complexes is necessarily accompanied by the reduction of pertechnetate. When concentrated hydrochloric acid is employed as a reductant, tetrachlorooxotechnetate(V) complexes can easily be obtained. A further reduction procedure is required to obtain hexachlorotech-netate(IV). Using these complexes, a number of technetium complexes have been synthesized by ligand substitution. The importance of preparative substitution reactions also increases in the light of the design and preparation of radiopharmaceuticals labelled with 99mTc and 188Re. [Pg.255]

Tc(III), Tc(IV) and Tc(V) P-diketonate complexes are stable in acid solution. In fact, when a chloroform solution of TcCl2(acac)2 was shaken with 1 M hydrochloric acid solution, no detectable change in the distribution ratio of the complex - defined as the ratio of the concentration of technetium in the organic phase to that in the aqueous phase - was observed over a 24 h period [26]. However, when the technetium complexes were backextracted into aqueous alkaline solution, decomposition occurred [26-29]. In all the cases studied, spectrophotometric investigation revealed that pertechnetate was formed quantitatively as a final product. [Pg.263]

Some recent interest in the technetium chemistry has been focused on complexes possessing a Tc=N3+ core. Tetrachloronitridotechnetate(VI) complexes can easily be synthesized by the reaction of pertechnetate with sodium azide in concentrated hydrochloric acid [34], Although its square-pyramidal structure resembles that of tetrachlorooxotechnetate(V) complexes, stable character of the nitrido complexes in aqueous solution shows a remarkable contrast to the oxo complexes. However, when a strong acid and a coordinating ligand are absent, the interconversion of di(p-oxo)nitridotechnetium(VI) complexes to the monomeric form occurs in the following complicated manner [35]... [Pg.267]

The reduction of pertechnetate with concentrated hydrochloric acid finally yields the tetravalent state, and no further reduction to the tervalent state takes place. Therefore, the tervalent technetium complex has usually been synthesized by the reduction of pertechnetate with an appropriate reductant in the presence of the desired ligand. Recently, the synthesis of tervalent technetium complexes with a new starting complex, hexakis(thiourea)technetium(III) chloride or chloropentakis(thiourea)technetium(III) chloride, has been developed. Thus, tris(P-diketonato)technetium(III) complexes (P-diketone acetylacetone, benzoyl-acetone, and 2-thenoyltrifluoroacetone) were synthesized by the ligand substitution reaction on refluxing [TcCl(tu)5]Cl2 with the desired P-diketone in methanol [28]. [Pg.268]

Crystals of [Tc(tu)6]Cl3 or [TcCl(tu)5]Cl2 are often employed for the synthesis of technetium(III) complexes. However, since the direct reduction of pertechnetate with excess thiourea in a hydrochloric acid solution yields [Tc(tu)6]3+ in high yield [37], direct use of the aqueous solution of the thiourea complex would be preferable for the synthesis of the technetium(III) complex without isolation of the crystals of the thiourea complex. In fact, technetium could be extracted from the aqueous solution of the Tc-thiourea complex with acetylacetone-benzene solution in two steps [38]. More than 95% extraction of technetium was attained using the following procedure [39] First a pertechnetate solution was added to a 0.5 M thiourea solution in 1 M hydrochloric acid. The solution turned red-orange as the Tc(III)-thiourea complex formed. Next, a benzene solution containing a suitable concentration of acetylacetone was added. After the mixture was shaken for a sufficient time (preliminary extraction), the pH of the aqueous phase was adjusted to 4.3 and the aqueous solution was shaken with a freshly prepared acetylacetonebenzene solution (main extraction). The extraction behavior of the technetium complex is shown in Fig. 6. The chemical species extracted into the organic phase seemed to differ from tris(acetylacetonato)technetium(III). Kinetic analysis of the two step extraction mechanism showed that the formation of 4,6-dimethylpyrimidine-... [Pg.268]

Another attempted synthesis of Tc(III)-EDTA and Tc(III)-HEDTA complexes (EDTA ethylenediaminetetraacetic acid HEDTA A -(2-hydroxy-methyl)ethylenediamine-N,AT, iV -triacetic acid) was carried out using [Tc(tu)6]3+ as the starting complex [40]. Technetium-EDTA complexes have been synthesized by the direct reduction of pertechnetate with a suitable reduc-tant in the presence of excess EDTA [41-43]. On addition of EDTA to the Tc(tu) + solution, the intensity of the absorption spectrum decreased with time and the solution color changed from reddish orange to light brown. An electrophoretic analysis for the Tc(III)-EDTA complex showed that more than 70%... [Pg.269]

Tetraphenylarsonium pertechnetate is precipitated in the presence of perchlorate as the carrier. The mixed salts are disolved in concentrated sulfuric acid and the solution is electrolyzed at platinum electrodes. The black deposit (TcOj) obtained is dissolved in perchloric acid, technetium heptoxide is distilled out of the solution... [Pg.115]

Campbell has studied the separation of technetium by extraction with tributyl phosphate from a mixture of fission products cooled for 200 days. Nearly complete separation of pertechnetate is achieved by extraction from 2 N sulfuric acid using a 45 % solution of tributyl phosphate in kerosene. Ruthenium interferes with the separation and is difficult to remove without loss of technetium other radioisotopes can be removed by a cation-exchange process. However, this separation procedure has not been widely applied because of the adverse influence of nitrate. [Pg.116]

Chromatographic methods for the separation of technetium from fission products are based on the strong sorption of pertechnetate from weakly acidic, neutral, and... [Pg.117]

The property of pertechnetate to be easily reduced by hydrochloric acid is utilized in its separation from rhenium by distillation. Perrier and Segre separated both elements by distillation from a mixture of sulfuric and hydrochloric acid at 180-200 °C. Under these conditions about 90% of rhenium is said to pass into the distillate, but almost all the technetium which is reduced to Tc (IV) remains in solution. The separation factor was found to be 50. [Pg.119]

Another distillation method involves reduction of pertechnetate by hydroxyl-amine . Rhenium is distilled from sulfuric acid. This method can be used for the separation of about 10 mg of rhenium from microamounts of technetium. [Pg.119]

Pertechnetate can also be reduced by p-thiocresol in acetic acid solution. With an excess of the reducing agent technetium forms a complex compound which readily dissolves in non-polar solvents such as chloroform, toluene or benzene. [Pg.125]

Pertechnetate and molybdate are reduced in acetic acid media by p-thiocresol and form complex compounds. As mentioned above the technetitun compound can be extracted by chloroform. Since the blue molybdenum complex is insoluble in this solvent separation of technetium from molybdenum can be achieved " . [Pg.126]

The extraction of TcO with methyl ethyl ketone, acetone, and pyridine results in a ruthenium decontamination factor of about 10 . Another effective separation method is based on the extraction of technetium as triphenylguanidinium pertechnetate from sulfuric acid by means of chlorex ()S-chloroethyl ether). Pertechnetate can be re-extracted with 3 N NH OH solution . [Pg.126]

The chromatographic separation of technetium from molybdenum is based on the different extent to which molybdate and pertechnetate are adsorbed from alkaline and acid solutions. The distribution coefficient of molybdate between the anion exchanger Dowex 1-X8 and 3 M NaOH is 12, while it is 10 for pertechnetate under the same conditions. Molybdate is also adsorbed to a much lesser extent from hydrochloric acid solutions than pertechnetate. Thus, molybdemun can be eluted by hydroxide or HCl solutions while nitric acid, perchlorate or thiocyanate are used for the elution of technetium . [Pg.128]

Technetiiun can also be isolated quantitatively from molybdate using Dowex-1 resin in the chloride form . Molybdate can be eluted with 0.1 M hydrochloride acid pertechnetate, however, is firmly adsorbed under these conditions. It can be readily eluted with 4.0 M nitric acid. The only drawback of this separation is the need to recover technetium from nitric acid solution. If the acid is evaporated with great care, losses may be kept quite low. [Pg.128]

Technetium metal can be electrodeposited from an acidic solution of pertechnetate using a platimun, nickel or copper cathode. Electrolysis of neutral, unbuffered solutions, alkaline solutions, and sulfuric acid solutions lower than 2 N yield a black deposit of hydrated TcOj The current efficiencies are generally poor but the deposition is reasonably quantitative. The deposition requires the application of relatively negative cathode potentials and is therefore non-selective. Polaro-graphy indicates that the overpotentials for the evolution of hydrogen on technetium are rather low hence, electrolysis from acidic media will always include concurrent discharge of hydrogen . ... [Pg.130]

Box recommends the addition of oxalic acid, tartaric acid or another di-carboxylic acid, to sulfuric acid for plating technetium either as a metal or oxide. On copper electrodes in 0.7 M oxalate and 0.45 M sulfuric acid, more than 99% of technetium metal is plated at 1.0-1.3 A/cm from a pertechnetate solution. However, from 0.4 M oxalate and 1.9 M sulfuric acid it is the oxide that is deposited. [Pg.130]

Co-precipitation of Re S with platinum sulfide from cone, hydrochloric acid solutions of microamounts of technetium and rhenium is suitable for the separation of technetium from rhenium , since technetium is only slightly co-precipitat-ed under these conditions (Fig. 7). At concentrations of 9 M HCl and above, virtually no technetium is co-precipitated with platinum sulfide at 90 °C, whereas rhenium is removed quantitatively even up to 10 M HCl. The reduction of pertechnetate at high chloride concentration may be the reason for this different behavior, because complete co-precipitation of technetiiun from sulfuric acid solutions up to 12 M has been observed. However, the separation of weighable amounts of technetium from rhenium by precipitation with hydrogen sulfide in a medium of 9-10 M HCl is not quantitative, since several percent of technetiiun coprecipitate with rhenium and measurable amounts of rhenium remain in solu-tion . Multiple reprecipitation of Re S is therefore necessary. [Pg.131]

Satisfactory separation of pertechnetate from perrhenate can be achieved by reducing Tc (VII) with hydrochloric acid and co-precipitating technetium with Fe(OH)j Technetium can then be oxidized to the heptavalent state by oxidizing the precipitate in cone, nitric acid and precipitating Fe(OH)j with ammonia. [Pg.132]

The strong absorptions of the complex technetium (IV) hexahalides (Fig. 10) can also be utilized for spectrophotometric determinations. A sensitive method has been developed using hexachlorotechnetate (IV) When pertechnetate is heated for 50- 0 min in cone, hydrochloric acid, it is reduced to the complex [TcClgp . The absorption curve of [TcClgf in cone. HCl has a maximum at 338 nm where technetium can be determined in the presence of microgram amounts of rhenium or molybdemun. The molar extinction coefficient is said to be 32.000 (after Jorgensen and Schwochau it amounts to 10.600). About 0.1 fig Tc/ml can be determined. Rhenium present in quantities up to 30 ng/ml has almost no influence on the determination of technetium. The error in the determination of the latter in the presence of molybdenum at a weight ratio of 1 1 is 1-2%. [Pg.136]

Pertechnetate reduced in the presence of thiocyanate in an acid medium forms a red-violet thiocyanate complex with a maximum extinction at 513 nm. A yellow thiocyanate complex with a lower valence state of technetium is formed simultaneously . The red-violet complex [TcfNCS), ]" and the yellow complex... [Pg.136]

Foster et al. have developed a method for determining technetium in dissolved nuclear fuel solutions. Tetrapropylammonium pertechnetate is doubly extracted from a basic medium into chloroform and the colored technetium (V) thiocyanate complex is formed in the chloroform phase by the addition of sulfuric acid, potassium thiocyanate and tetrapropylammonium hydroxide. The colored complex absorbs at 513 nm, has a molar extinction coefficient of 46,000 and is stable for several hours. Of more than 50 metals studied, none impairs measurements at ratios less than 100 to 1 mol with respect to technetium. Most anions do not disturb the determination of technetiiun. The standard deviation for a single determination is 0.09 fig over the range of 1 to 20 fig of technetium. [Pg.138]

Miller and Zittef have used 1,5-diphenylcarbazide (0.25% solution in acetone) for the spectrophotometric determination of technetiiun. 1 to 15 /ig of technetium in 10 ml solution can be ascertained by measuring the extinction at 520 nm of the Tc (IV) complex in 1.5 M sulfuric acid. The development of the most intense color takes about 35 min the reduction of pertechnetate to Tc (IV) is effected by the reagent itself before complexation occurs. The molar extinction coefficient of the complex at 520 nm is 48,600. The relative standard deviation is 2%. Fe ", Ce ", and CrOj" clearly disturb measurements, VO , MoOj ,... [Pg.139]

Technetium can also be precipitated and weighed as nitron pertechnetate CjqHj N TcO which is precipitated at 80 °C from a weak sulfuric acid or acetic acid solution with an excess of a solution of 5% nitron in 3% acetic acid. The precipitate is washed with cold water, dried at 100 °C and weighed. Nitrate, perchlorate, permanganate, periodate, chloride, bromide, and iodide ions disturb the determination. [Pg.140]


See other pages where Technetium pertechnetic acid is mentioned: [Pg.138]    [Pg.134]    [Pg.134]    [Pg.117]    [Pg.25]    [Pg.25]    [Pg.1044]    [Pg.1050]    [Pg.29]    [Pg.30]    [Pg.137]    [Pg.195]    [Pg.183]    [Pg.118]    [Pg.125]    [Pg.131]    [Pg.131]    [Pg.141]    [Pg.144]    [Pg.137]   
See also in sourсe #XX -- [ Pg.485 ]




SEARCH



Pertechnetate

Pertechnetates

Technetium

© 2024 chempedia.info