Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separation solvent

The sohd can be contacted with the solvent in a number of different ways but traditionally that part of the solvent retained by the sohd is referred to as the underflow or holdup, whereas the sohd-free solute-laden solvent separated from the sohd after extraction is called the overflow. The holdup of bound hquor plays a vital role in the estimation of separation performance. In practice both static and dynamic holdup are measured in a process study, other parameters of importance being the relationship of holdup to drainage time and percolation rate. The results of such studies permit conclusions to be drawn about the feasibihty of extraction by percolation, the holdup of different bed heights of material prepared for extraction, and the relationship between solute content of the hquor and holdup. If the percolation rate is very low (in the case of oilseeds a minimum percolation rate of 3 x 10 m/s is normally required), extraction by immersion may be more effective. Percolation rate measurements and the methods of utilizing the data have been reported (8,9) these indicate that the effect of solute concentration on holdup plays an important part in determining the solute concentration in the hquor leaving the extractor. [Pg.88]

When tallow fatty acids are the feed, stearic acid (actually 60/40 C16/C18) and oleic acids are the products. Solvent separation is also used to separate stearic acid from isostearic acid when hydrogenated monomer is the feed, and oleic acid from linoleic acid when using tall oil fatty acids as feed. [Pg.90]

The clay-cataly2ed iatermolecular condensation of oleic and/or linoleic acid mixtures on a commercial scale produces approximately a 60 40 mixture of dimer acids and higher polycarboxyUc acids) and monomer acids (C g isomerized fatty acids). The polycarboxyUc acid and monomer fractions are usually separated by wiped-film evaporation. The monomer fraction, after hydrogenation, can be fed to a solvent separative process that produces commercial isostearic acid, a complex mixture of saturated fatty acids that is Hquid at 10°C. Dimer acids can be further separated, also by wiped-film evaporation, iato distilled dimer acids and trimer acids. A review of dimerization gives a comprehensive discussion of the subject (10). [Pg.115]

Efficient solvent separation is indicated by absence of yellow color in the distillate. An 18-in. column packed with Berl saddles is satisfactory. [Pg.27]

Winstein suggested that two intermediates preceding the dissociated caibocation were required to reconcile data on kinetics, salt effects, and stereochemistry of solvolysis reactions. The process of ionization initially generates a caibocation and counterion in proximity to each other. This species is called an intimate ion pair (or contact ion pair). This species can proceed to a solvent-separated ion pair, in which one or more solvent molecules have inserted between the caibocation and the leaving group but in which the ions have not diffused apart. The free caibocation is formed by diffusion away from the anion, which is called dissociation. [Pg.270]

Attack by a nucleophile or the solvent can occur at either of the ion pairs. Nucleophilic attack on the intimate ion pair would be expected to occur with inversion of configuration, since the leaving group would still shield the fiont side of the caibocation. At the solvent-separated ion pair stage, the nucleophile might approach fiom either fece, particularly in the case where solvent is the nucleophile. Reactions through dissociated carbocations should occur with complete lacemization. According to this interpretation, the identity and stereochemistry of the reaction products will be determined by the extent to which reaction occurs on the un-ionized reactant, the intimate ion pair, the solvent-separated ion pair, or the dissociated caibocation. [Pg.270]

If it is assumed that ionization would result in complete randomization of the 0 label in the caihoxylate ion, is a measure of the rate of ionization with ion-pair return, and is a measure of the extent of racemization associated with ionization. The fact that the rate of isotope exchange exceeds that of racemization indicates that ion-pair collapse occurs with predominant retention of configuration. When a nucleophile is added to the system (0.14 Af NaN3), k y, is found to be imchanged, but no racemization of reactant is observed. Instead, the intermediate that would return with racemization is captured by azide ion and converted to substitution product with inversion of configuration. This must mean that the intimate ion pair returns to reactant more rapidly than it is captured by azide ion, whereas the solvent-separated ion pair is captured by azide ion faster than it returns to racemic reactant. [Pg.271]

The ion-pair return phenomenon can also be demonstrated by comparing the rate of loss of enantiomeric purity of reactant with the rate of product formation. For a number of systems, including 1-aiylethyl tosylates, ftie rate of decrease of optical rotation is greater than the rate of product formation. This indicates the existence of an intermediate that can re-form racemic reactant. The solvent-separated ion pair is the most likely intermediate in the Winstein scheme to pl this role. [Pg.271]

The concept of ion pairs in nucleophilic substitution is now generally accepted. Presumably, the barriers separating the intimate, solvent-separated, and dissociated ion pairs are quite small. The potential energy diagram in Fig. 5.4 depicts the three ion-pair species as being roughly equivalent in energy and separated by small barriers. [Pg.272]

Stabilization of a carbocation intermediate by benzylic conjugation, as in the 1-phenylethyl system shown in entry 8, leads to substitution with diminished stereosped-ficity. A thorough analysis of stereochemical, kinetic, and isotope effect data on solvolysis reactions of 1-phenylethyl chloride has been carried out. The system has been analyzed in terms of the fate of the intimate ion-pair and solvent-separated ion-pair intermediates. From this analysis, it has been estimated that for every 100 molecules of 1-phenylethyl chloride that undergo ionization to an intimate ion pair (in trifluoroethanol), 80 return to starting material of retained configuration, 7 return to inverted starting material, and 13 go on to the solvent-separated ion pair. [Pg.306]

In solvents containing low concentrations of water in acetic acid, dioxane, or sulfolane, most of the alcohol is formed by capture of water with retention of configuradon. This result has been explained as involving a solvent-separated ion pair which would arise as a result of concerted protonation and nitrogen elimination. ... [Pg.307]

Solvent separation, using the propane deasphalting process, is another procedure by which asphalts of the straight reduced type may be manufactured. This is a physical separation process used to recover high viscosity lube fractions from a given vacuum residuum. When mixed with the residuum, the solvent preferentially dissolves the oil and precipitates the asphalt. [Pg.233]

As in previous theoretical studies of the bulk dispersions of hard spheres we observe in Fig. 1(a) that the PMF exhibits oscillations that develop with increasing solvent density. The phase of the oscillations shifts to smaller intercolloidal separations with augmenting solvent density. Depletion-type attraction is observed close to the contact of two colloids. The structural barrier in the PMF for solvent-separated colloids, at the solvent densities in question, is not at cr /2 but at a larger distance between colloids. These general trends are well known in the theory of colloidal systems and do not require additional comments. [Pg.311]

Figures 6.6 and 6.7 show the effect of a solvent separation column. In the case of Fig. 6.7, the upper part of the figure shows the chromatogram of polyvinyl chrolide, which contains dioctyl phthalate (DOP), using KF-806L. In this case, DOP is not separated from a solvent peak. However, DOP can be separated from the solvent peak using KF-800D in conjunetion with KF-806L (Table 6.6). Figures 6.6 and 6.7 show the effect of a solvent separation column. In the case of Fig. 6.7, the upper part of the figure shows the chromatogram of polyvinyl chrolide, which contains dioctyl phthalate (DOP), using KF-806L. In this case, DOP is not separated from a solvent peak. However, DOP can be separated from the solvent peak using KF-800D in conjunetion with KF-806L (Table 6.6).
In the first step the hydrated ion and ligand form a solvent-separated complex this step is believed to be relatively fast. The second, slow, step involves the readjustment of the hydration sphere about the complex. The measured rate constants can be approximately related to the constants in Scheme IX by applying the fast preequilibrium assumption the result is k = Koko and k = k Q. However, the situation can be more complicated than this. - °... [Pg.152]

The species R X is called an internal, contact, or intimate ion pair, and R (s),X (s), sometimes symbolized R X , is an external or solvent-separated ion pair. [Pg.402]

On die basis of molecular welglit determinabons by ayoscopy In THE and conductlvdy measutemetiis. It was conduded diat die polymeric dialn breaks up in solution to form smaller aggregates, probably giving rise to solvent-separated... [Pg.36]

Solvent extraction may also be used to reduce asphaltenes and metals from heavy fractions and residues before using them in catalytic cracking. The organic solvent separates the resids into demetallized oil with lower metal and asphaltene content than the feed, and asphalt with high metal content. Figure 3-2 shows the IFP deasphalting process and Table 3-2 shows the analysis of feed before and after solvent treatment. Solvent extraction is used extensively in the petroleum refining industry. Each process uses its selective solvent, but, the basic principle is the same as above. [Pg.53]

Use safer solvents. Minimal use should be made of solvents, separation agents, and other auxiliary substances in a reaction. [Pg.396]

According to Eigen and Tamm [87,88], ion-pair formation proceeds stepwise, starting from separated solvated ions which form a solvent-separated ion pair [C+SSA ]°, followed by a solvent-shared ion pair [C+SA ]° and finally a contact ion pair, [C+A ]° [Eqs. (4)-(6)]. All these species are solvated. The types of ion pair formed depend on the relative strength of the interaction of the involved species. [Pg.465]

R is the distance parameter, defining the upper limit of ion association. For spherical ions forming contact ion pairs it is simply the sum of the crystallographic radii of the ions a — a+ + a for solvent-shared and solvent-separated ion pairs it equals a + s or a + 2s respectively, where s is... [Pg.466]

Alkenyllithium derivatives, carrying carbanion-stabilizing substituents, which facilitate the formation of solvent-separated ion pairs, can also exhibit preparatively useful configurational stability in respect to the double bond of the precursor. [Pg.231]

The reaction (Eq. (5)) in THF yields labile THF adducts which are converted into the more stable HMPA adducts by addition of HMPA. The various equilibria existing between Na2Fe(CO)4 and several donor solvents are described in a detailed paper by Collman in HMPA, the solvent-separated supernucleophilic ion pair [Na+x HMPA x Fe(CO)4 ] is the kinetically dominant species, with no kinetic contribution from free [Fe(CO)J2 . In THF, Na2Fe(CO)4 is much less dissociated, with tight-ion paired [NaFe(CO)4] as the kinetically important species [96],... [Pg.12]

Sodium peroxide [2 Na+, 02 ] is obtained. This indicates that Na + also induces the disproportionation of superoxide [59], presumably due to the large difference of interaction energy between the contact ion pair [Na+,02] and the solvent-separated ion pair [Na+/THF/02]. [Pg.61]

Mattay, J., and Vondenhof, M. Contact and Solvent-Separated Radical Ion Pairs in Organic Photochemistry. 159, 219-255 (1991). [Pg.148]

The value of a12 affects the total pressure required to achieve any specified degree of separation. This is illustrated in Fig. 32. A binary solvent separates into phases a and b at lower pressures as oc12 increases. This follows from the fact that a large ac12 indicates that the gas is much more soluble than predicted by Henry s law. [Pg.201]

The lack of solvent separated pairs raises the question whether some alternative mode of solvation should be considered. The ester group of the penultimate unit of the polymer, or the one preceeding it, could act as a solvating agent. The idea of intramolecular solvation was proposed by several workers in the field 37) and it is supported by the results of nmr studies of polymethyl methacrylate formed under various experimental conditions 38). Hypothetical structures such as those depicted below were proposed 39 h... [Pg.100]

Contact Ion-pairs Solvent separated Free ions... [Pg.147]


See other pages where Separation solvent is mentioned: [Pg.166]    [Pg.250]    [Pg.454]    [Pg.516]    [Pg.453]    [Pg.91]    [Pg.91]    [Pg.220]    [Pg.158]    [Pg.163]    [Pg.270]    [Pg.306]    [Pg.232]    [Pg.371]    [Pg.502]    [Pg.207]    [Pg.204]    [Pg.667]    [Pg.100]    [Pg.111]    [Pg.59]   
See also in sourсe #XX -- [ Pg.33 ]

See also in sourсe #XX -- [ Pg.124 , Pg.125 ]

See also in sourсe #XX -- [ Pg.637 , Pg.638 ]

See also in sourсe #XX -- [ Pg.9 ]

See also in sourсe #XX -- [ Pg.114 , Pg.150 ]

See also in sourсe #XX -- [ Pg.693 ]

See also in sourсe #XX -- [ Pg.693 ]

See also in sourсe #XX -- [ Pg.323 ]

See also in sourсe #XX -- [ Pg.693 ]




SEARCH



Solvent separate

© 2024 chempedia.info