Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tackifiers properties

Terpene resins are most commonly used in adhesive production, where they confer very strong tackifying properties. The terpene resins improve the resistance of adhesives to oxidative degradation. These resins are normally produced from p-pinene and are light yellow in colour. Polymers of dipentene and limonene are also available as resins. [Pg.160]

A combination of natural rubberandad-nonylphenol novolac resin show tackifier properties that ate useful in adhesives. The amoimt of this resin necessary for a high tack in an adhesive depends on the resin type and its solubility in the rubber phase [199]. [Pg.669]

As with most of the other sections of this chapter, the basic reference to the applications of rosin and its derivatives as components of adhesive formulations up to the mid-1980s, is the corresponding chapter by Kennedy et al. [73] of the classical Naval Store book. The major emphasis in that chapter was placed on the tackifying properties of rosin-based resins in pressure-sensitive, hot melt and sealant adhesives. Therefore, before proceeding to a critical bibliographic survey, it seems appropriate to define the concept of tack and its repercussion in the broad area of adhesion, as opposed to other contexts, like printing inks, paints and coatings. [Pg.78]

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

Terpene-based hydrocarbon resins are typically based on natural products such as a-pinene, P-pinene, and ti-limonene [5989-27-5] which are obtained from the wood and citms industries, respectively. These resins, which were originally the preferred tackifiers for natural mbber appHcations, possess similar properties to aHphatic petroleum resins, which were developed later. Terpene-based resins have been available since the mid-1930s and are primarily used in the adhesives industry. [Pg.350]

Heteroatom functionalized terpene resins are also utilized in hot melt adhesive and ink appHcations. Diels-Alder reaction of terpenic dienes or trienes with acrylates, methacrylates, or other a, P-unsaturated esters of polyhydric alcohols has been shown to yield resins with superior pressure sensitive adhesive properties relative to petroleum and unmodified polyterpene resins (107). Limonene—phenol resins, produced by the BF etherate-catalyzed condensation of 1.4—2.0 moles of limonene with 1.0 mole of phenol have been shown to impart improved tack, elongation, and tensile strength to ethylene—vinyl acetate and ethylene—methyl acrylate-based hot melt adhesive systems (108). Terpene polyol ethers have been shown to be particularly effective tackifiers in pressure sensitive adhesive appHcations (109). [Pg.357]

As with almost all mbbers, the final properties are deterrnined by compounding and subsequent vulcanization or cross-linking. Various fillers, processing aids, plasticizers, tackifiers, cure systems, and antidegradants are used. [Pg.485]

Among the different pressure sensitive adhesives, acrylates are unique because they are one of the few materials that can be synthesized to be inherently tacky. Indeed, polyvinylethers, some amorphous polyolefins, and some ethylene-vinyl acetate copolymers are the only other polymers that share this unique property. Because of the access to a wide range of commercial monomers, their relatively low cost, and their ease of polymerization, acrylates have become the dominant single component pressure sensitive adhesive materials used in the industry. Other PSAs, such as those based on natural rubber or synthetic block copolymers with rubbery midblock require compounding of the elastomer with low molecular weight additives such as tackifiers, oils, and/or plasticizers. The absence of these low molecular weight additives can have some desirable advantages, such as ... [Pg.485]

The presence of these low molecular weight tackifiers and plasticizers may also have other negative effects on the PSA performance. For example, the reduced entanglement of the polymer typically reduces the cohesive strength of the PSA, although crosslinking may be used to compensate for this loss in property. Plasticizers and tackifiers may also be susceptible to migration and/or oxidation, both... [Pg.502]

The increased polarity of the acrylic polymers puts more stringent requirements on the properties of the tackifiers or plasticizers that can be used. The very low polarity additives commonly found in rubber based PSAs are not useful in most acrylic PSA formulations. For example, materials like paraffin waxes, mineral oils, and synthetic hydrocarbon tackifiers have little or no value in most acrylic PSAs. [Pg.503]

Rosin and its derivates have shown wide compatibility with a broad range of acrylics and other PSA polymer precursors. This property has made them one of the most common tackifiers in the industry. [Pg.504]

The other class of acrylic compatible tackifiers includes those based on ter-penes. Terpenes are monomers obtained by wood extraction or directly from pine tree sap. To make the polyterpene tackifiers, the monomers have to be polymerized under cationic conditions, typically with Lewis acid catalysis. To adjust properties such as solubility parameter and softening point, other materials such as styrene, phenol, limonene (derived from citrus peels), and others may be copolymerized with the terpenes. [Pg.504]

Some rubber base adhesives need vulcanization to produce adequate ultimate strength. The adhesion is mainly due to chemical interactions at the interface. Other rubber base adhesives (contact adhesives) do not necessarily need vulcanization but rather adequate formulation to produce adhesive joints, mainly with porous substrates. In this case, the mechanism of diffusion dominates their adhesion properties. Consequently, the properties of the elastomeric adhesives depend on both the variety of intrinsic properties in natural and synthetic elastomers, and the modifying additives which may be incorporated into the adhesive formulation (tackifiers, reinforcing resins, fillers, plasticizers, curing agents, etc.). [Pg.573]

The dry adhesive films on the two substrates to be joined must be placed in contact to develop adequate autoadhesion, i.e. diffusion of polymer rubber chains must be achieved across the interface between the two films to produce intimate adhesion at molecular level. The application of pressure and/or temperature for a given time allows the desired level of intimate contact (coalescence) between the two adhesive film surfaces. Obviously, the rheological and mechanical properties of the rubber adhesives will determine the degree of intimacy at the interface. These properties can be optimized by selecting the adequate rubber grade, the nature and amount of tackifier and the amount of filler, among other factors. [Pg.575]

Tackifiers and modifiers are generally added to improve the adhesive performance of synthetic elastomers. All resins added to an adhesive formulation modify their properties (viscosity, open time, tack) and therefore these resins are also called... [Pg.596]

In this section the rosins and rosin derivative resins, coumarone-indene and hydrocarbon resins, polyterpene resins and phenolic resins will be considered. The manufacture and structural characteristics of natural and synthetic resins will be first considered. In a second part of this section, the characterization and main properties of the resins will be described. Finally, the tackifier function of resins in rubbers will be considered. [Pg.597]

Tackifying resins enhance the adhesion of non-polar elastomers by improving wettability, increasing polarity and altering the viscoelastic properties. Dahlquist [31 ] established the first evidence of the modification of the viscoelastic properties of an elastomer by adding resins, and demonstrated that the performance of pressure-sensitive adhesives was related to the creep compliance. Later, Aubrey and Sherriff [32] demonstrated that a relationship between peel strength and viscoelasticity in natural rubber-low molecular resins blends existed. Class and Chu [33] used the dynamic mechanical measurements to demonstrate that compatible resins with an elastomer produced a decrease in the elastic modulus at room temperature and an increase in the tan <5 peak (which indicated the glass transition temperature of the resin-elastomer blend). Resins which are incompatible with an elastomer caused an increase in the elastic modulus at room temperature and showed two distinct maxima in the tan <5 curve. [Pg.620]

In rubber base adhesives, fillers may affect properties such as cohesion, cold flow, rheology and peel adhesion. Most fillers increase cohesion and reduce cold flow. In some formulations, even a small addition of filler dramatically reduces peel strength either because of interactions with the tackifier or because filler particles at the surface reduce the area of contact between the adhesive and the substrate. [Pg.628]

Tackifiers. Phenolic resins are added to increase strength, oils resistance and resiliency of NBR adhesives. On the other hand, tack and adhesive properties can be improved by adding chlorinated alkyl carbonates. To impart tack, hydrogenated rosin resins and coumarone-indene resins can be added. [Pg.657]

It has to be kept in mind that the polymer properties desired in polychloroprene latex formulations may be totally different from those needed in dry grades. Polychloroprene latices generally exhibit lower contactability than dry polychloro-prenes because of the presence of residual soaps and salts, appreciable gel content and segregation of tackifier [79]. For this reason, the polychloroprene latices have usually medium to low crystallinity. [Pg.670]


See other pages where Tackifiers properties is mentioned: [Pg.161]    [Pg.706]    [Pg.710]    [Pg.47]    [Pg.161]    [Pg.706]    [Pg.710]    [Pg.47]    [Pg.234]    [Pg.235]    [Pg.235]    [Pg.356]    [Pg.357]    [Pg.358]    [Pg.28]    [Pg.518]    [Pg.19]    [Pg.499]    [Pg.468]    [Pg.485]    [Pg.476]    [Pg.479]    [Pg.481]    [Pg.482]    [Pg.483]    [Pg.488]    [Pg.503]    [Pg.506]    [Pg.507]    [Pg.511]    [Pg.526]    [Pg.540]    [Pg.576]    [Pg.597]    [Pg.716]   
See also in sourсe #XX -- [ Pg.64 ]




SEARCH



Tackifiers

Tackifying

© 2024 chempedia.info