Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tackifying

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

Pentaerythritol in rosin ester form is used in hot-melt adhesive formulations, especially ethylene—vinyl acetate (EVA) copolymers, as a tackifier. Polyethers of pentaerythritol or trim ethyl ol eth an e are also used in EVA and polyurethane adhesives, which exhibit excellent bond strength and water resistance. The adhesives maybe available as EVA melts or dispersions (90,91) or as thixotropic, one-package, curable polyurethanes (92). Pentaerythritol spko ortho esters have been used in epoxy resin adhesives (93). The EVA adhesives are especially suitable for cellulose (paper, etc) bonding. [Pg.466]

Terpene-based hydrocarbon resins are typically based on natural products such as a-pinene, P-pinene, and ti-limonene [5989-27-5] which are obtained from the wood and citms industries, respectively. These resins, which were originally the preferred tackifiers for natural mbber appHcations, possess similar properties to aHphatic petroleum resins, which were developed later. Terpene-based resins have been available since the mid-1930s and are primarily used in the adhesives industry. [Pg.350]

Heteroatom functionalized terpene resins are also utilized in hot melt adhesive and ink appHcations. Diels-Alder reaction of terpenic dienes or trienes with acrylates, methacrylates, or other a, P-unsaturated esters of polyhydric alcohols has been shown to yield resins with superior pressure sensitive adhesive properties relative to petroleum and unmodified polyterpene resins (107). Limonene—phenol resins, produced by the BF etherate-catalyzed condensation of 1.4—2.0 moles of limonene with 1.0 mole of phenol have been shown to impart improved tack, elongation, and tensile strength to ethylene—vinyl acetate and ethylene—methyl acrylate-based hot melt adhesive systems (108). Terpene polyol ethers have been shown to be particularly effective tackifiers in pressure sensitive adhesive appHcations (109). [Pg.357]

Pressure sensitive adhesives typically employ a polymer, a tackifier, and an oil or solvent. Environmental concerns are moving the PSA industry toward aqueous systems. Polymers employed in PSA systems are butyl mbber, natural mbber (NR), random styrene—butadiene mbber (SBR), and block copolymers. Terpene and aUphatic resins are widely used in butyl mbber and NR-based systems, whereas PSAs based on SBR may require aromatic or aromatic modified aUphatic resins. [Pg.358]

Terpene resins, because of their low odor and acceptable FDA clearance, are used as tackifiers for the natural and synthetic gum bases used in chewing gum. Selected petroleum resins are also used as gum bases. [Pg.358]

Adhesives. Contact adhesives are blends of mbber, phenoHc resin, and additives suppHed in solvent or aqueous dispersion form they are typically appHed to both surfaces to be joined (80). Evaporation of the solvent leaves an adhesive film that forms a strong, peel-resistant bond. Contact adhesives are used widely in the furniture and constmction industries and also in the automotive and footwear industries. The phenoHc resins promote adhesion and act as tackifiers, usually at a concentration of 20—40%. In solvent-based contact adhesives, neoprene is preferred, whereas nitrile is used in specialty appHcations. The type and grade of phenoHc resin selected control tack time, bond strength, and durabiHty. [Pg.303]

Another important apphcation for 4-/ f2 -octylphenol is ia the production of phenoHc resias. Novolak resias based oa 4-/ f2 -octylpheaol are widely used ia the tire iadustry as tackifiers. The tackiaess of these resias biads the many parts of an automobile tire prior to final vulcanization. A specialty use for novolak resias based oa 4-/ f2 -octylpheaol is the productioa of a ziacated resia, which is formulated as a dispersioa ia water and coated onto paper ia combination with eacapsulated leuco dyes to yield carbonless copy paper (see Microencapsulation). Pressure from writing bursts the encapsulated leuco dye, which is converted from its colorless form to its colored form by the ncated resin (53). Novolak resias based oa 4-/ f2 -octylpheaol are also used ia the productioa of specialty printing inks. [Pg.68]

Rosin ester resins are used extensively in pressure-sensitive adhesives as tackifiers. The adhesive is formulated by blending the resin with a polymer in solution or as aqueous emulsions. Typical compositions may contain about 50% resin. The glycerol or pentaerythritol esters of stabilized rosins are often used because they are stable on aging. [Pg.140]

Uses. Coumarone-indene resins have outlets in paints, as tackifiers in mbber compounding, and as adhesives in the manufacturing of flooring tiles (see Hydrocarbon resins). [Pg.347]

New vinyl acetate—acrylate (VAA) emulsion copolymers stabilized with poly(vinyl alcohol) have been developed. The acryflc component of the VAAs contributes to improved compatibiUty with tackifiers (143). [Pg.469]

Tackifiers are used to increase the tackiness and the setting speed of adhesives. They increase tackiness by softening the poly(vinyl acetate) polymer in the wet and the dry adhesive film. Tackifiers are usually rosin or its derivatives or phenoHc resins. Other additives frequently needed for specific apphcation and service conditions are antifoams, biocides, wetting agents, and humectants. [Pg.470]

Adhesives for paper tubes, paperboard, cormgated paperboard, and laminated fiber board are made from dispersions of clays suspended with fully hydrolyzed poly(vinyl alcohol). Addition of boric acid improves wet tack and reduces penetration into porous surfaces (312,313). The tackified grades have higher solution viscosity than unmodified PVA and must be maintained at pH 4.6—4.9 for optimum wet adhesion. [Pg.488]

Oxidized castor oils are excellent nonmigrating, nonvolatile plasticizers (qv) for ceUulosic resins, poly(vinyl butyral), polyamides, shellac, and natural and synthetic mbber (see Rubber, natural). The high viscosity products are also used as tackifiers in gasket compounds and adhesives (qv) because of good oil and solvent resistance. They also serve as excellent pigment grinding media and as a base for inks (qv), lubricating oils, and hydrauHc oils (62). [Pg.155]

As with almost all mbbers, the final properties are deterrnined by compounding and subsequent vulcanization or cross-linking. Various fillers, processing aids, plasticizers, tackifiers, cure systems, and antidegradants are used. [Pg.485]


See other pages where Tackifying is mentioned: [Pg.1]    [Pg.257]    [Pg.510]    [Pg.860]    [Pg.958]    [Pg.958]    [Pg.234]    [Pg.234]    [Pg.234]    [Pg.235]    [Pg.235]    [Pg.162]    [Pg.353]    [Pg.353]    [Pg.356]    [Pg.357]    [Pg.358]    [Pg.358]    [Pg.358]    [Pg.28]    [Pg.518]    [Pg.19]    [Pg.228]    [Pg.251]    [Pg.313]    [Pg.313]    [Pg.230]    [Pg.230]    [Pg.262]    [Pg.499]    [Pg.468]    [Pg.469]    [Pg.517]    [Pg.517]    [Pg.517]    [Pg.517]   


SEARCH



Acetylene phenol tackifying resin

Acetylene phenolic tackifying resin

Acrylated tackifying oligomers

Additives tackifier

Adhesive tackifier

Adhesive tackifiers

Aliphatic tackifying resins

Aliphatic/aromatic resin tackifiers

Antioxidants, Antiozonants, Tackifiers, Flame Retardants, and Blowing Agents

Aromatic resin tackifiers

Copolymer tackifier

Coumarone-indene tackifiers

Effects of Tackifiers

Hydrocarbon tackifiers

Midblock tackifier

POLYMERIC TACKIFIER

Phenol formaldehyde tackifying resins

Phenol tackifying resin

Phenolic rubber tackifying resins

Phenolic tackifiers

Phenolic tackifying resin

Polyamide tackifying resins

Polyterpene tackifiers

Polyurethane Tackifier

Pressure-sensitive adhesives tackifiers

Pressure-sensitive tackifier

Rosin ester tackifiers

Rosin tackifiers

Rubber tackifiers

Specialty additives tackifiers

Tackifier

Tackifier for pressure-sensitive

Tackifier function

Tackifier hot-melt

Tackifier resins

Tackifier resins nitrile rubbers

Tackifier resins pressure-sensitive tape

Tackifier resins rubber-based adhesives

Tackifier selection

Tackifier waterborne

Tackifiers

Tackifiers

Tackifiers in hot melt adhesives

Tackifiers properties

Tackifiers, analysis

Tackifying action

Tackifying agent

Tackifying effect

Tackifying resin

Terpene tackifier

Water-based tackifiers

© 2024 chempedia.info