Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface science

Ge et al. used AIM to quantify the surface charge transfer and spin structure at an atom-resolved level in CO-adsorbed Ni 110.  [Pg.406]

Yamagishi et carried out large-scale DFT calculations for benzene adsorption on the ferromagnetic substrate Ni lll. AIM is used to obtain local [Pg.406]


H. van Olphen and K. J. Mysels, Physical Chemistry Enriching Topics from Colloid and Surface Science, Theorex (8327 La Jolla Scenic Drive), La Jolla, CA, 1975. [Pg.43]

The influence of electrical charges on surfaces is very important to their physical chemistry. The Coulombic interaction between charged colloids is responsible for a myriad of behaviors from the formation of opals to the stability of biological cells. Although this is a broad subject involving both practical application and fundamental physics and chemistry, we must limit our discussion to those areas having direct implications for surface science. [Pg.169]

To first order, the dispersion (a-a) interaction is independent of the structure in a condensed medium and should be approximately pairwise additive. Qualitatively, this is because the dispersion interaction results from a small perturbation of electronic motions so that many such perturbations can add without serious mutual interaction. Because of this simplification and its ubiquity in colloid and surface science, dispersion forces have received the most significant attention in the past half-century. The way dispersion forces lead to long-range interactions is discussed in Section VI-3 below. Before we present this discussion, it is useful to recast the key equations in cgs/esu units and SI units in Tables VI-2 and VI-3. [Pg.231]

An important and expensive problem in surface science occurs in the prevention of the attachment of marine animals such as barnacles to ship surfaces, a process known as biofouling. Baier and Meyer [159] have shown that the Zisman plot can be used to predict biofouling, thus avoiding costly field tests to find a successful coating to prevent biofouling. [Pg.369]

A beautiful and elegant example of the intricacies of surface science is the formation of transparent, thermodynamically stable microemulsions. Discovered about 50 years ago by Winsor [76] and characterized by Schulman [77, 78], microemulsions display a variety of useful and interesting properties that have generated much interest in the past decade. Early formulations, still under study today, involve the use of a long-chain alcohol as a cosurfactant to stabilize oil droplets 10-50 nm in diameter. Although transparent to the naked eye, microemulsions are readily characterized by a variety of scattering, microscopic, and spectroscopic techniques, described below. [Pg.516]

M. Suzuki, ed.. Fundamentals of Adsorption, Studies in Surface Science and Catalysis, B. Delman and J. T. Yates, eds., Elsevier, New York, 1993. [Pg.676]

To proceed with the topic of this section. Refs. 250 and 251 provide oversights of the application of contemporary surface science and bonding theory to catalytic situations. The development of bimetallic catalysts is discussed in Ref. 252. Finally, Weisz [253] discusses windows on reality the acceptable range of rates for a given type of catalyzed reaction is relatively narrow. The reaction becomes impractical if it is too slow, and if it is too fast, mass and heat transport problems become limiting. [Pg.729]

Studies of surfaces and surface properties can be traced to the early 1800s [1]. Processes that involved surfaces and surface chemistry, such as heterogeneous catalysis and Daguerre photography, were first discovered at that time. Since then, there has been a continual interest in catalysis, corrosion and other chemical reactions that involve surfaces. The modem era of surface science began in the late 1950s, when instmmentation that could be used to investigate surface processes on the molecular level started to become available. [Pg.283]

The importance of surface science is most often exliibited in studies of adsorption on surfaces, especially in regards to teclmological applications. Adsorption is the first step in any surface chemical reaction or film-growdi process. The mechanisms of adsorption and the properties of adsorbate-covered surfaces are discussed in section Al.7.3. [Pg.283]

Most fiindamental surface science investigations employ single-crystal samples cut along a low-index plane. The single-crystal surface is prepared to be nearly atomically flat. The surface may also be modified in vacuum. For example, it may be exposed to a gas that adsorbs (sticks) to the surface, or a film can be grown onto a sample by evaporation of material. In addition to single-crystal surfaces, many researchers have investigated vicinal, i.e. stepped, surfaces as well as the surfaces of polycrystalline and disordered materials. [Pg.283]

Surfaces are investigated with surface-sensitive teclmiques in order to elucidate fiindamental infonnation. The approach most often used is to employ a variety of techniques to investigate a particular materials system. As each teclmique provides only a limited amount of infonnation, results from many teclmiques must be correlated in order to obtain a comprehensive understanding of surface properties. In section A 1.7.5. methods for the experimental analysis of surfaces in vacuum are outlined. Note that the interactions of various kinds of particles with surfaces are a critical component of these teclmiques. In addition, one of the more mteresting aspects of surface science is to use the tools available, such as electron, ion or laser beams, or even the tip of a scaiming probe instrument, to modify a surface at the atomic scale. The physics of the interactions of particles with surfaces and the kinds of modifications that can be made to surfaces are an integral part of this section. [Pg.284]

The liquid-solid interface, which is the interface that is involved in many chemical and enviromnental applications, is described m section A 1.7.6. This interface is more complex than the solid-vacuum interface, and can only be probed by a limited number of experimental techniques. Thus, obtaining a fiindamental understanding of its properties represents a challenging frontier for surface science. [Pg.284]

The study of clean surfaces encompassed a lot of interest in the early days of surface science. From this, we now have a reasonable idea of the geometric and electronic structure of many clean surfaces, and the tools are readily available for obtaining this infonnation from other systems, as needed. [Pg.284]

Wlien a surface is exposed to a gas, the molecules can adsorb, or stick, to the surface. Adsorption is an extremely important process, as it is the first step in any surface chemical reaction. Some of die aspects of adsorption that surface science is concerned with include the mechanisms and kinetics of adsorption, the atomic bonding sites of adsorbates and the chemical reactions that occur with adsorbed molecules. [Pg.293]

The desire to understand catalytic chemistry was one of the motivating forces underlying the development of surface science. In a catalytic reaction, the reactants first adsorb onto the surface and then react with each other to fonn volatile product(s). The substrate itself is not affected by the reaction, but the reaction would not occur without its presence. Types of catalytic reactions include exchange, recombination, unimolecular decomposition, and bimolecular reactions. A reaction would be considered to be of the Langmuir-Hinshelwood type if both reactants first adsorbed onto the surface, and then reacted to fonn the products. If one reactant first adsorbs, and the other then reacts with it directly from the gas phase, the reaction is of the Eley-Ridel type. Catalytic reactions are discussed in more detail in section A3.10 and section C2.8. [Pg.302]

A tremendous amount of work has been done to delineate the detailed reaction mechanisms for many catalytic reactions on well characterized surfaces [1, 45]. Many of tiiese studies involved impinging molecules onto surfaces at relatively low pressures, and then interrogating the surfaces in vacuum with surface science teclmiques. For example, a usefiil technique for catalytic studies is TPD, as the reactants can be adsorbed onto the sample in one step, and the products fonned in a second step when the sample is heated. Note that catalytic surface studies have also been perfonned by reacting samples in a high-pressure cell, and then returning them to vacuum for measurement. [Pg.302]

Because surface science employs a multitude of teclmiques, it is necessary that any worker in the field be acquainted with at least the basic principles underlying tlie most popular ones. These will be briefly described here. For a more detailed discussion of the physics underlymg the major surface analysis teclmiques, see the appropriate chapter m this encyclopedia, or [49]. [Pg.304]

Figure Al.7.11. Schematic diagram of a generic surface science experiment. Particles, such as photons, electrons, or ions, are mcident onto a solid surface, while the particles emitted from the surface are collected and measured by the detector. Figure Al.7.11. Schematic diagram of a generic surface science experiment. Particles, such as photons, electrons, or ions, are mcident onto a solid surface, while the particles emitted from the surface are collected and measured by the detector.
Below are brief descriptions of some of the particle-surface interactions important in surface science. The descriptions are intended to provide a basic understanding of how surfaces are probed, as most of the infonuation that we have about surfaces was obtained tluough the use of techniques that are based on such interactions. The section is divided into some general categories, and the important physics of the interactions used for analysis are emphasized. All of these teclmiques are described in greater detail in subsequent sections of the encyclopaedia. Also, note that there are many more teclmiques than just those discussed here. These particular teclmiques were chosen not to be comprehensive, but instead to illustrate the kind of infonuation that can be obtained from surfaces and interfaces. [Pg.305]

Electrons are extremely usefiil as surface probes because the distances that they travel within a solid before scattering are rather short. This implies that any electrons that are created deep within a sample do not escape into vacuum. Any technique that relies on measurements of low-energy electrons emitted from a solid therefore provides infonuation from just the outenuost few atomic layers. Because of this inlierent surface sensitivity, the various electron spectroscopies are probably the most usefid and popular teclmiques in surface science. [Pg.305]

One of the more interesting new areas of surface science involves manipulation of adsorbates with the tip of an STM. This allows for the fonuation of artificial structures on a surface at the atomic level. In fact, STM tips are being investigated for possible use m lithography as part of the production of very small features on microcomputer chips [74]. [Pg.311]

One of tlie less explored frontiers in atomic-scale surface science is the study of the liquid-solid interface. [Pg.314]

Hudson J B 1992 Surface Science An Introduction (Boston Butterworth-Heinemann)... [Pg.317]

Winters H F and Coburn J W 1992 Surface science aspects of etching reactions Surf. Sc/. Rep. 14 161... [Pg.318]

Somor]ai G A 1996 Surface science at high pressures Z. Phys. Chem. 197 1... [Pg.318]

Woodruff D P and Delchar T A 1994 Modern Techniques of Surface Science 2nd edn (Cambridge Cambridge University Press)... [Pg.318]

Crommie M F, Lutz C P and Eigler D M 1993 Confinement of electrons to quantum corrals on a metal surface Science 262 218... [Pg.319]

Madey T E 1986 Electron- and photon-stimulated desorption probes of structure and bonding at surfaces Science 234 316... [Pg.320]

For example, energy transfer in molecule-surface collisions is best studied in nom-eactive systems, such as the scattering and trapping of rare-gas atoms or simple molecules at metal surfaces. We follow a similar approach below, discussing the dynamics of the different elementary processes separately. The surface must also be simplified compared to technologically relevant systems. To develop a detailed understanding, we must know exactly what the surface looks like and of what it is composed. This requires the use of surface science tools (section B 1.19-26) to prepare very well-characterized, atomically clean and ordered substrates on which reactions can be studied under ultrahigh vacuum conditions. The most accurate and specific experiments also employ molecular beam teclmiques, discussed in section B2.3. [Pg.899]

The direct dissociation of diatomic molecules is the most well studied process in gas-surface dynamics, the one for which the combination of surface science and molecular beam teclmiques allied to the computation of total energies and detailed and painstaking solution of the molecular dynamics has been most successful. The result is a substantial body of knowledge concerning the importance of the various degrees of freedom (e.g. molecular rotation) to the reaction dynamics, the details of which are contained in a number of review articles [2, 36, 37, 38, 39, 40 and 41]. [Pg.906]

Surface science has tlirived in recent years primarily because of its success at providing answers to frmdamental questions. One objective of such studies is to elucidate the basic mechanisms that control surface reactions. For example, a goal could be to detennine if CO dissociation occurs prior to oxidation over Pt catalysts. A second objective is then to extrapolate this microscopic view of surface reactions to the... [Pg.920]

How are fiindamental aspects of surface reactions studied The surface science approach uses a simplified system to model the more complicated real-world systems. At the heart of this simplified system is the use of well defined surfaces, typically in the fonn of oriented single crystals. A thorough description of these surfaces should include composition, electronic structure and geometric structure measurements, as well as an evaluation of reactivity towards different adsorbates. Furthemiore, the system should be constructed such that it can be made increasingly more complex to more closely mimic macroscopic systems. However, relating surface science results to the corresponding real-world problems often proves to be a stumbling block because of the sheer complexity of these real-world systems. [Pg.921]

Essential to modem surface science teclmiques is the attaimnent and maintenance of ultrahigh vacuum... [Pg.921]

The importance of low pressures has already been stressed as a criterion for surface science studies. However, it is also a limitation because real-world phenomena do not occur in a controlled vacuum. Instead, they occur at atmospheric pressures or higher, often at elevated temperatures, and in conditions of humidity or even contamination. Hence, a major tlmist in surface science has been to modify existmg techniques and equipment to pemiit detailed surface analysis under conditions that are less than ideal. The scamiing tunnelling microscope (STM) is a recent addition to the surface science arsenal and has the capability of providing atomic-scale infomiation at ambient pressures and elevated temperatures. Incredible insight into the nature of surface reactions has been achieved by means of the STM and other in situ teclmiques. [Pg.921]

This chapter will explore surface reactions at the atomic level. A brief discussion of corrosion reactions is followed by a more detailed look at growth and etchmg reactions. Finally, catalytic reactions will be considered, with a strong emphasis on the surface science approach to catalysis. [Pg.921]

Surface science studies of corrosion phenomena are excellent examples of in situ characterization of surface reactions. In particular, the investigation of corrosion reactions with STM is promising because not only can it be used to study solid-gas interfaces, but also solid-liquid interfaces. [Pg.924]

The following two sections will focus on epitaxial growth from a surface science perspective with the aim of revealing the fundamentals of tliin-film growth. As will be discussed below, surface science studies of thin-film deposition have contributed greatly to an atomic-level understanding of nucleation and growth. [Pg.928]

Dry etching is a commonly used teclmique for creating highly anisotropic, patterned surfaces. The interaction of gas phase etchants with surfaces is of fundamental interest to understanding such phenomena as undercutting and the dependence of etch rate on surface structure. Many surface science studies aim to understand these interactions at an atomic level, and the next section will explore what is known about the etching of silicon surfaces. [Pg.934]


See other pages where Surface science is mentioned: [Pg.693]    [Pg.729]    [Pg.745]    [Pg.302]    [Pg.303]    [Pg.312]    [Pg.924]    [Pg.928]    [Pg.928]    [Pg.937]   
See also in sourсe #XX -- [ Pg.11 ]

See also in sourсe #XX -- [ Pg.67 ]

See also in sourсe #XX -- [ Pg.2 ]

See also in sourсe #XX -- [ Pg.260 , Pg.317 , Pg.479 ]

See also in sourсe #XX -- [ Pg.230 ]

See also in sourсe #XX -- [ Pg.342 ]

See also in sourсe #XX -- [ Pg.489 ]

See also in sourсe #XX -- [ Pg.491 , Pg.496 ]

See also in sourсe #XX -- [ Pg.4 , Pg.37 , Pg.40 , Pg.66 , Pg.124 , Pg.186 ]

See also in sourсe #XX -- [ Pg.49 , Pg.68 , Pg.91 , Pg.92 , Pg.105 , Pg.118 , Pg.242 , Pg.492 , Pg.641 , Pg.794 ]

See also in sourсe #XX -- [ Pg.13 ]

See also in sourсe #XX -- [ Pg.3 , Pg.4 , Pg.5 , Pg.6 , Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 , Pg.12 , Pg.13 , Pg.14 , Pg.15 , Pg.171 , Pg.175 , Pg.177 , Pg.179 , Pg.180 , Pg.184 , Pg.185 ]

See also in sourсe #XX -- [ Pg.214 , Pg.261 ]

See also in sourсe #XX -- [ Pg.462 ]




SEARCH



Adsorption in Colloid and Surface Science - A Universal Concept

Ammonia synthesis surface science

An Outline of Surface Science

Applications to surface science

Catalytic chemistry, surface science

Catalytic chemistry, surface science approach

Colloid and surface science

Contact angle measurement surface science

ELECTROCHEMICAL SURFACE SCIENCE

Fritz Haber Institute as an International Center for Surface Science

Fundamental Equations in Colloid and Surface Science

High pressure surface science

Hydrocarbons surface science

In Situ Surface Science Studies to Provide Micro Kinetics

Interface surface science

Kinetic measurement surface science experiments

Lessons Learned from Surface Science

Methanol surface science

Models kinetic, from surface science data

Molecular probes surface science through

Overview of Polymer Surface and Interface Science

Previous Approaches to Catalysis from the Surface Science

Relationship of XAS to Other Surface Science and in Situ Techniques

State of the Art in Surface Science Tailored for Electrocatalysis Investigations

Surface Science Aspects

Surface Science and Catalysis

Surface Science of Adhesion

Surface and Interface Science

Surface and Interface Science: Properties of Elemental Surfaces, First Edition. Edited by Klaus Wandelt

Surface biomaterials science

Surface science acronyms

Surface science adhesion

Surface science agglomeration

Surface science approach

Surface science dispersion

Surface science experiments

Surface science instrumentation

Surface science modem

Surface science outline

Surface science research, solar

Surface science spreading

Surface science study

Surface science technique

Surface science wetting

Surface science, physical chemistry

Surface science, physical chemistry course

Surface science, solar materials

Surface science, solar materials interfaces

Surface science, tools

Surface-enhanced Raman sciences

The Origins of Modern Surface Science

The Surface Science Approach

Use in surface science studies

© 2019 chempedia.info