Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface experimental techniques

The course of a surface reaction can in principle be followed directly with the use of various surface spectroscopic techniques plus equipment allowing the rapid transfer of the surface from reaction to high-vacuum conditions see Campbell [232]. More often, however, the experimental observables are the changes with time of the concentrations of reactants and products in the gas phase. The rate law in terms of surface concentrations might be called the true rate law and the one analogous to that for a homogeneous system. What is observed, however, is an apparent rate law giving the dependence of the rate on the various gas pressures. The true and the apparent rate laws can be related if one assumes that adsorption equilibrium is rapid compared to the surface reaction. [Pg.724]

The liquid-solid interface, which is the interface that is involved in many chemical and enviromnental applications, is described m section A 1.7.6. This interface is more complex than the solid-vacuum interface, and can only be probed by a limited number of experimental techniques. Thus, obtaining a fiindamental understanding of its properties represents a challenging frontier for surface science. [Pg.284]

The above discussion represents a necessarily brief simnnary of the aspects of chemical reaction dynamics. The theoretical focus of tliis field is concerned with the development of accurate potential energy surfaces and the calculation of scattering dynamics on these surfaces. Experimentally, much effort has been devoted to developing complementary asymptotic techniques for product characterization and frequency- and time-resolved teclmiques to study transition-state spectroscopy and dynamics. It is instructive to see what can be accomplished with all of these capabilities. Of all the benclunark reactions mentioned in section A3.7.2. the reaction F + H2 —> HE + H represents the best example of how theory and experiment can converge to yield a fairly complete picture of the dynamics of a chemical reaction. Thus, the remainder of this chapter focuses on this reaction as a case study in reaction dynamics. [Pg.875]

Experimental techniques based on the application of mechanical forces to single molecules in small assemblies have been applied to study the binding properties of biomolecules and their response to external mechanical manipulations. Among such techniques are atomic force microscopy (AFM), optical tweezers, biomembrane force probe, and surface force apparatus experiments (Binning et al., 1986 Block and Svoboda, 1994 Evans et ah, 1995 Israelachvili, 1992). These techniques have inspired us and others (see also the chapters by Eichinger et al. and by Hermans et al. in this volume) to adopt a similar approach for the study of biomolecules by means of computer simulations. [Pg.40]

The work function (p is the energy necessary to just remove an electron from the metal surface in thermoelectric or photoelectric emission. Values are dependent upon the experimental technique (vacua of 10 or torr, clean surfaces, and surface conditions including the crystal face identification). [Pg.355]

The most direct test is to compare the BET area with the geometrical area of the solid. Unfortunately, comparisons of this kind are relatively rare on account of experimental difficulties. The choices are to work with, say, single crystals having a well defined surface, when techniques of quite extraordinary sensitivity will be needed for measurement of the adsorption or, to obtain a larger surface area by use of thin sheets, narrow rods or small spheres, and run the risk that the surface will not be truly smooth so that the actual area will exceed the geometrical area. [Pg.62]

It would clearly be desirable to extend the scope of the Kelvin method to include a range of adsorptives having varied physical properties, especially surface tension, molar volume, molecular shape and size. This would enable the validity of the method and its attendant assumptions to be tested more adequately, and would also allow a variation in experimental technique, for example by permitting measurements at 298 K rather than 77 K. [Pg.166]

Experimental techniques to visualize flows have been extensively used to define fluid flow in pipes and air flow over lift and control surface of airplanes. More recently this technology has been appHed to the coating process and it is now possible to visualize the flow patterns (16,17). The dimensions of the flow field are small, and the flow patterns both along the flow and inside the flow are important. Specialized techniques such as utilizing small hydrogen bubbles, dye injection, and optional sectioning, are required to visualize these flows. [Pg.313]

Surface Area and Permeability or Porosity. Gas or solute adsorption is typicaUy used to evaluate surface area (74,75), and mercury porosimetry is used, ia coajuactioa with at least oae other particle-size analysis, eg, electron microscopy, to assess permeabUity (76). Experimental techniques and theoretical models have been developed to elucidate the nature and quantity of pores (74,77). These iaclude the kinetic approach to gas adsorptioa of Bmaauer, Emmett, and TeUer (78), known as the BET method and which is based on Langmuir s adsorption model (79), the potential theory of Polanyi (25,80) for gas adsorption, the experimental aspects of solute adsorption (25,81), and the principles of mercury porosimetry, based on the Young-Duprn expression (24,25). [Pg.395]

Unlike traditional surface science techniques (e.g., XPS, AES, and SIMS), EXAFS experiments do not routinely require ultrahigh vacuum equipment or electron- and ion-beam sources. Ultrahigh vacuum treatments and particle bombardment may alter the properties of the material under investigation. This is particularly important for accurate valence state determinations of transition metal elements that are susceptible to electron- and ion-beam reactions. Nevertheless, it is always more convenient to conduct experiments in one s own laboratory than at a Synchrotron radiation focility, which is therefore a significant drawback to the EXAFS technique. These focilities seldom provide timely access to beam lines for experimentation of a proprietary nature, and the logistical problems can be overwhelming. [Pg.224]

One of the major advantages of SEXAFS over other surface structutal techniques is that, provided that single scattering applies (see below), one can go direcdy from the experimental spectrum, via Fourier transformation, to a value for bond length. The Fourier transform gives a real space distribudon with peaks in at dis-... [Pg.232]

Nearly all these techniques involve interrogation of the surface with a particle probe. The function of the probe is to excite surface atoms into states giving rise to emission of one or more of a variety of secondary particles such as electrons, photons, positive and secondary ions, and neutrals. Because the primary particles used in the probing beam can also be electrons or photons, or ions or neutrals, many separate techniques are possible, each based on a different primary-secondary particle combination. Most of these possibilities have now been established, but in fact not all the resulting techniques are of general application, some because of the restricted or specialized nature of the information obtained and others because of difficult experimental requirements. In this publication, therefore, most space is devoted to those surface analytical techniques that are widely applied and readily available commercially, whereas much briefer descriptions are given of the many others the use of which is less common but which - in appropriate circumstances, particularly in basic research - can provide vital information. [Pg.2]

Additional suggested resources for the reader include introductory articles on scanning probe techniques for materials properties measurement [82,83J. A comprehensive manual describing various surface preparation techniques, experimental procedures and instrumentation is also a good resource [84J, although the more recent modulation based techniques are not covered. Key textbooks include Johnson s on contact mechanics [51J and Israelachvili s on surface forces [18J, as well as a treatment of JKR/DMT issues by Maugis [85J. [Pg.206]

The main experimental techniques used to study the failure processes at the scale of a chain have involved the use of deuterated polymers, particularly copolymers, at the interface and the measurement of the amounts of the deuterated copolymers at each of the fracture surfaces. The presence and quantity of the deuterated copolymer has typically been measured using forward recoil ion scattering (FRES) or secondary ion mass spectroscopy (SIMS). The technique was originally used in a study of the effects of placing polystyrene-polymethyl methacrylate (PS-PMMA) block copolymers of total molecular weight of 200,000 Da at an interface between polyphenylene ether (PPE or PPO) and PMMA copolymers [1]. The PS block is miscible in the PPE. The use of copolymers where just the PS block was deuterated and copolymers where just the PMMA block was deuterated showed that, when the interface was fractured, the copolymer molecules all broke close to their junction points The basic idea of this technique is shown in Fig, I. [Pg.223]

In this review we put less emphasis on the physics and chemistry of surface processes, for which we refer the reader to recent reviews of adsorption-desorption kinetics which are contained in two books [2,3] with chapters by the present authors where further references to earher work can be found. These articles also discuss relevant experimental techniques employed in the study of surface kinetics and appropriate methods of data analysis. Here we give details of how to set up models under basically two different kinetic conditions, namely (/) when the adsorbate remains in quasi-equihbrium during the relevant processes, in which case nonequilibrium thermodynamics provides the needed framework, and (n) when surface nonequilibrium effects become important and nonequilibrium statistical mechanics becomes the appropriate vehicle. For both approaches we will restrict ourselves to systems for which appropriate lattice gas models can be set up. Further associated theoretical reviews are by Lombardo and Bell [4] with emphasis on Monte Carlo simulations, by Brivio and Grimley [5] on dynamics, and by Persson [6] on the lattice gas model. [Pg.440]

This limited survey has indicated the wide range of chemical compounds, particularly oxides, which may be formed on a metal surface as a result of a corrosion process. The nature of such films and scales needs to be carefully characterised. Fortunately, a wide spectrum of experimental techniques is now available to provide such valuable information, and others are under development. A convenient summary is provided in Table 1.6. [Pg.32]

Much of the difficulty in demonstrating the mechanism of breakaway in a particular case arises from the thinness of the reaction zone and its location at the metal-oxide interface. Workers must consider (a) whether the oxide is cracked or merely recrystallised (b) whether the oxide now results from direct molecular reaction, or whether a barrier layer remains (c) whether the inception of a side reaction (e.g. 2CO - COj + C)" caused failure or (d) whether a new transport process, chemical transport or volatilisation, has become possible. In developing these mechanisms both arguments and experimental technique require considerable sophistication. As a few examples one may cite the use of density and specific surface-area measurements as routine of porosimetry by a variety of methods of optical microscopy, electron microscopy and X-ray diffraction at reaction temperature of tracer, electric field and stress measurements. Excellent metallographic sectioning is taken for granted in this field of research. [Pg.282]

Recent developments in the mechanisms of corrosion inhibition have been discussed in reviews dealing with acid solutions " and neutral solu-tions - . Novel and improved experimental techniques, e.g. surface enhanced Raman spectroscopy , infrared spectroscopy. Auger electron spectroscopyX-ray photoelectron spectroscopyand a.c. impedance analysis have been used to study the adsorption, interaction and reaction of inhibitors at metal surfaces. [Pg.824]

The development of modern surface characterization techniques has provided means to study the relationship between the chemical activity and the physical or structural properties of a catalyst surface. Experimental work to understand this reactivity/structure relationship has been of two types fundamental studies on model catalyst systems (1,2) and postmortem analyses of catalysts which have been removed from reactors (3,4). Experimental apparatus for these studies have Involved small volume reactors mounted within (1) or appended to (5) vacuum chambers containing analysis Instrumentation. Alternately, catalyst samples have been removed from remote reactors via transferable sample mounts (6) or an Inert gas glove box (3,4). [Pg.15]

Apparatus and Procedure. The apparatus and procedure were identical to those outlined in ref. Surface composition measurements were based on an O2-CO titration technique described by Miura and Gonzalez (5-6). The ratio of surface metal/02/CO was 1/1/T on Ru-sllica, 1/0.5/1.75 on Rh-sllica, 1/0.5/2.0 on Pt-silica and 1/0.5/1.6 on Ir-silica. These titration ratios were found to be independent of surface composition. Surface compositions determined by the O2-CO titration method have been verified using a variety of experimental techniques (2,5-6). [Pg.295]

A relatively new arrangement for the study of the interfacial region is achieved by so-called emersed electrodes. This experimental technique developed by Hansen et al. consists of fully or partially removing the electrode from the solution at a constant electrical potential. This ex situ experiment (Fig. 9), usually called an emersion process, makes possible an analysis of an electrode in an ambient atmosphere or an ultrahigh vacuum (UHV). Research using modem surface analysis such as electron spectroscopy for chemical analysis (ESCA), electroreflectance, as well as surface resistance, electrical current, and in particular Volta potential measurements, have shown that the essential features (e.g., the charge on... [Pg.31]

Hydropolymer gel has been considered as a possible candidate for an artificial articular cartilage in artificial joints because it exhibits very low friction when it is in contact with a solid. The origin of such low friction is considered to be associated with the water absorbed in the gel [83-86], some of which is squeezed out from the gel under the load and serves as a lubricant layer between the gel and solid surface, resulting in hydrodynamic lubrication [87, 88]. Although the structural information about the interfacial water is important to understand the role of water for the low frictional properties of hydrogel in contact with a solid and the molecular structure of lubricants other than water at solid/solid interfaces have been investigated theoretically [89-91] and experimentally [92-98], no experimental investigations on water structure at gel/solid interfaces have been carried out due to the lack of an effective experimental technique. [Pg.89]

The surface area and the dimensions and volume of the pores can be determined in many ways. A convenient method is based on measurement of the capacity for adsorption. The experimental techniques do not differ from those used for chemisorption (see Section 3.6.3). The fundamental difference between physi.sorption and chemisorption is that in chemisorption chemical bonds are formed, and, as a consequence, the number of specific sites is measured, whereas in physisorption the bonds are weak so that non-chemical properties, in particular the surface area, are determined. [Pg.97]


See other pages where Surface experimental techniques is mentioned: [Pg.712]    [Pg.1701]    [Pg.524]    [Pg.304]    [Pg.212]    [Pg.356]    [Pg.428]    [Pg.108]    [Pg.388]    [Pg.430]    [Pg.852]    [Pg.197]    [Pg.245]    [Pg.389]    [Pg.357]    [Pg.366]    [Pg.18]    [Pg.252]    [Pg.117]    [Pg.338]    [Pg.352]    [Pg.119]    [Pg.648]    [Pg.367]    [Pg.158]    [Pg.392]    [Pg.154]   
See also in sourсe #XX -- [ Pg.778 ]




SEARCH



Surface experimental

Surfacing techniques

© 2024 chempedia.info