Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface active substances, adsorption

Adsorption of various organic compounds (e.g., cyclohexanol, adamantanol-1, and camphor) has been studied at a renewed Sn + Pb alloy/electrolyte interface.820-824 The time variation of the surface composition depends on the solution composition, the nature and concentration of the surface-active substance, and on E. The " of cyclohexanol for just-renewed Sn + Pb alloys shifts toward more negative E with time, i.e., as the amount of Pb at the Sn + Pb alloy surface increases. [Pg.144]

Adsorption of surface-active substances is attended by changes in EDL structure and in the value of the / -potential. Hence, the effects described in Section 14.2 will arise in addition. When surface-active cations [NR] are added to an acidic solution, the / -potential of the mercury electrode will move in the positive direction and cathodic hydrogen evolution at the mercury, according to Eq. (14.16), will slow down (Fig. 14.6, curve 2). When I ions are added, the reaction rate, to the contrary, will increase (curve 3), owing to the negative shift of / -potential. These effects disappear at potentiafs where the ions above become desorbed (at vafues of pofarization of less than 0.6 V in the case of [NR]4 and at values of polarization of over 0.9 V in the case of I ). [Pg.249]

In the process of passivation, metals usually are found only in one of the two extreme states, active or passive. The transition between these states occurs suddenly and discontinuously. The intermediate state in region BC can only be realized with special experimental precautions. It is in this sense that passivation differs from the inhibition of electrochemical reactions observed during adsorption of a number of surface-active substances, where the degree of inhibition varies smoothly with the concentration of added material. [Pg.306]

The appreciation of the importance of adsorption phenomena at liquid interfaces is probably as old as human history, since it is easily recognized in many facets of everyday life. It is not surprising that liquid interfaces have been a favorite subject of scientific interest since as early as the eighteenth century [3,4], From an experimental point of view, one obvious virtue of the liquid interfaces for studying adsorption phenomena is that we can use surface tension or interfacial tension for thermodynamic analysis of the surface properties. The interfacial tension is related to the adsorbed amount of surface active substances through the Gibbs adsorption equation. [Pg.120]

Thus, the HLB of an ionic surface-active substance is balanced at the standard ion-transfer potential. This is simply a reinterpretation of the definition of Aq P, but is a very important relation, which is valid no matter what the actual form of the adsorption... [Pg.125]

In the electrode-solution interphase, the adsorption of these substances is also affected by the influence of the electric field in the double layer on their dipoles. Substances that collect in the interphase as a result of forces other than electrostatic are termed surface-active substances or surfactants. [Pg.210]

Electroneutral substances that are less polar than the solvent and also those that exhibit a tendency to interact chemically with the electrode surface, e.g. substances containing sulphur (thiourea, etc.), are adsorbed on the electrode. During adsorption, solvent molecules in the compact layer are replaced by molecules of the adsorbed substance, called surface-active substance (surfactant).t The effect of adsorption on the individual electrocapillary terms can best be expressed in terms of the difference of these quantities for the original (base) electrolyte and for the same electrolyte in the presence of surfactants. Figure 4.7 schematically depicts this dependence for the interfacial tension, surface electrode charge and differential capacity and also the dependence of the surface excess on the potential. It can be seen that, at sufficiently positive or negative potentials, the surfactant is completely desorbed from the electrode. The strong electric field leads to replacement of the less polar particles of the surface-active substance by polar solvent molecules. The desorption potentials are characterized by sharp peaks on the differential capacity curves. [Pg.235]

The basic quantity in the study of adsorption is the surface excess of the surface-active substance. In the formation of a monomolecular film of the... [Pg.235]

Equation (4.3.37) can be used to determine the function = T1(c1), which is the adsorption isotherm for the given surface-active substance. Substitution for c1 in the Gibbs adsorption isotherm and integration of the differential equation obtained yields the equation of state for a monomole-cular film = T jt). [Pg.237]

Whiskers are sometimes formed in solutions with high concentrations of surface-active substances. These are long single crystals, growing in only one direction, while growth in the remaining directions is retarded by adsorption of surface-active substances. Whiskers are characterized by quite... [Pg.387]

Surfactants and their biotransformation products enter surface waters primarily through discharges from wastewater treatment plants (WWTPs). Depending on their physicochemical properties, surface-active substances may partition between the dissolved phase and the solid phase through adsorption onto suspended particles and sediments [1,2]. Several environmental studies have been dedicated to the assessment of the contribution of surfactant residues in effluents to the total load of surfactants in receiving waters. This contribution reviews the relevant literature describing the presence of linear alkylbenzene sulfonates (LASs) and in particular of their degradation products in surface waters and sediments (Table 6.3.1). [Pg.724]

The Gibbs equation relates the extent of adsorption at an interface (reversible equilibrium) to the change in interfacial tension qualitatively, Eq. (4.3) predicts that a substance which reduces the surface (interfacial) tension [(Sy/8 In aj) < 0] will be adsorbed at the surface (interface). Electrolytes have the tendency to increase (slightly) y, but most organic molecules, especially surface active substances (long chain fatty acids, detergents, surfactants) decrease the surface tension (Fig. 4.1). Amphi-pathic molecules (which contain hydrophobic and hydrophilic groups) become oriented at the interface. [Pg.89]

Investigations have shown that, if one carefully sucked a small amount of the surface solution of a surfactant, then one can estimate the magnitude of E The concentration of the surface-active substance was found to be 8 pmol/mL. The concentration in the bulk phase was 4 pmol/L. The data show that the surface excess is 8 pmol/mL - 4 pmol/mL = 4 pmol/mL. Further, this indicates that, when there is 8 pmol/L in the bulk of the solution, the SDS molecules completely cover the surface. The consequence of this is that, at a concentration higher than 8 pmol/L, no more adsorption at the interface of SDS takes place. Thus, y remains constant (almost). This means that the surface is completely covered with SDS molecules. The area-per-molecule data (as found to be 50 A2) indicates that the SDS molecules are oriented with the S04- groups pointing toward the water phase, while the alkyl chains are oriented away from the water phase. [Pg.61]

Once nucleation has begun on a substrate (this usually includes the inside walls of the reaction vessel), it generally becomes easier for the film to grow, since deposition usually occurs more readily on the nucleated surface than on the clean surface. The crystals will continue to grow until blocked by some process, such as steric hindrance by nearby crystals or adsorption of surface-active substances from the solution. The former is probably the dominant reason for growth termination in most cases. [Pg.52]

If a dilute solution of a surface-active substance is brought in contact with a large adsorbing surface, then extensive adsorption will occur with an attendant reduction in the concentration of the solution. To meet the requirement of a large surface available for adsorption, the solid —which is called the adsorbent — must be finely subdivided. From the analytical data... [Pg.331]

Adsorption phenomena significantly influence the rate of electrode reactions. The heterogeneous nature of electrode reactions determines that energetics and local activities of reacting species in the vicinity of the electrode may be different from those in the bulk solution, even when mass transport limitations can be regarded as negligible. The structure and properties of the electrode—solution interface then play a key role in the adsorption of electroactive as well as electroinactive surface active substances (SAS) at electrodes. [Pg.58]

An almost overwhelmingly large number of different techniques for measuring dynamic and static interfacial tension at liquid interfaces is available. Since many of the commercially available instruments are fairly expensive to purchase (see Internet Resources), the appropriate selection of a suitable technique for the desired application is essential. Dukhin et al. (1995) provides a comprehensive overview of currently available measurement methods (also see Table D3.6.1). An important aspect to consider is the time range over which the adsorption kinetics of surface-active substances can be measured (Fig. D3.6.5). For applications in which small surfactant molecules are primarily used, the maximum bubble pressure (MBP) method is ideally suited, since it is the only... [Pg.639]

The theoretical foundation of the drop volume technique (DVT) was developed by Lohnstein (1908, 1913). Originally, this method was only intended to determine static interfacial tension values. Over the past 20 years, the technique has received increasing attention because of its extended ability to determine dynamic interfacial tension. DVT is suitable for both liquid/liquid and liquid/gas systems. Adsorption kinetics of surface-active substances at liquid/liquid or liquid/gas interfaces can be determined between 0.1 sec and several hours (see Fig. D3.6.5). [Pg.642]

As described below, two different measurement variations exist to determine adsorption kinetics of surface-active substances continuous drop formation and quasistatic measurements. [Pg.642]

The adsorption kinetics of surface-active substances at liquid/liquid and liquid/gas inter-... [Pg.642]

Active Oxygen Method (AOM), 535, 544 Adsorption, and interfacial properties diffusion and kinetic controlled models, 617-618 (figs.), 620-622 Gibbs adsorption isotherm, 617-619 kinetics of surface-active substances, 639... [Pg.757]

Tajima, K. (1971) Radiotracer studies on adsorption of surface active substance at, aqueous surface. [Pg.43]

Surface-active substances — are electroactive or elec-troinactive substances capable to concentrate at the interfacial region between two phases. Surface-active substances accumulate at the electrode-electrolyte - interface due to -> adsorption on the electrode surface (see -> electrode surface area) or due to other sorts of chemical interactions with the electrode material (see - chemisorption) [i]. Surface-active substances capable to accumulate at the interface between two immiscible electrolyte solutions are frequently termed surfactants. Their surface activity derives from the amphiphilic structure (see amphiphilic compounds) of their molecules possessing hydrophilic and lipophilic moieties [ii]. [Pg.650]

Surface-Active Substances Surface Adsorption. Many organic solutes in aqueous solution, particularly polar molecules and molecules containing both polar and nonpolar groupings, considerably reduce the surface tension of water. Such solutes tend to accumulate strongly at the surface where, in many cases, they form a unimolecular film of adsorbed molecules. [Pg.302]

We consider the adsorption and partition of an ionic surfactant i in two inuniscible electrolyte solutions, O and W, in contact, as a function of the phase-boundary potential between O and W, Aq = where and are the inner potentials in W and O. When a surface-active substance partitions between O and W, the partition of the surfactant and the two adsorption processes from both sides of the interface are not independent of each other, as these are all affected by Aq 0 [18]. The dependence of the partition of an ionic substance on Aq is expressed by the Nemst equation. [Pg.156]

The energy state of the interface obviously determines the adsorption of a given surfactant by this inter ce. On the other hand, a given interface may adsorb with different energy surface-active substances of different chemical nature. Rhebinder (1927) was the first to point out that the difference in polarity between boundary phases, which affects the interfedal energies, is the main factor determing adsorption for adsorption of a third component by the interface, the polarity of this component should lie between the polarities of the two boundary phases. [Pg.250]

Vogler 31) developed a mathematical model to derive semiquantitative kinetic parameters interpreted in terms of transport and adsorption of surfactants at the interface. The model was fitted to experimental time-dependent interfacial tension, and empirical models of concentration-de-pendent interfacial tension were compared to theoretical expressions for time-dependent surfactant concentration. Adamczyk (32) theoretically related the mechanical properties of the interface to the adsorption kinetics of surfactants by introducing the compositional surface elasticity, which was defined as the proportionality coefficient between arbitrary surface deformations and the resulting surface concentrations. Although the expressions to describe the adsorption process differed from one another, it was demonstrated that the time-dependent interfacial tensions mirrored the change of surface-active substances at the interface. [Pg.71]

Batina, N., Ruzic, I., and Cosovic, B. (1985) An Electrochemical Study of Strongly Adsorbable Surface-Active Substances. Determinations of Adsorption Parameters for Triton-X-100 at the Mercury/Sodium Chloride Interface, J. Electroanal. Chem. Interfacial Electrochem. 190, 21-32. [Pg.937]

Table 1 indicates the solids or substances that can be effectively separated by the adsorptive bubble separation process. In general, the light-weight suspended solids, such as fibers, activated sludge, free oil, chemical floes, and fats, can be readily separated by the process in accordance with the physical-chemical bubble attachment mechanism shown in Fig. 1. The colloidal solids, soluble organics, soluble inorganics, and surface-active substances can be separated from the bulk liquid by the bubble separation process after they are converted from colloidal or soluble form into insoluble form (i.e., suspended solids), which can then be floated by gas bubbles. [Pg.83]

Alternatively, an adsorptive bubble separation process in accordance with its surface-adsorption phenomena, shown in Fig. 1, can separate the soluble surface-active substances easily. Non-surface-active suspended solids, colloidal solids, soluble organics, and soluble inorganics can all be converted into surface-active substances. All surface-active substances (in either soluble form or insoluble form) can be effectively floated by gas bubbles (75). [Pg.83]

In summation, the adsorptive bubble separation process, in theory, can remove or separate almost any kind of light-weight and/or surface-active substances from water. Because there are various types of adsorptive bubble separation processes, selection of an appropriate type for a specific application is an important skill (43,84). [Pg.83]


See other pages where Surface active substances, adsorption is mentioned: [Pg.180]    [Pg.68]    [Pg.237]    [Pg.107]    [Pg.156]    [Pg.62]    [Pg.177]    [Pg.620]    [Pg.631]    [Pg.639]    [Pg.17]    [Pg.179]    [Pg.196]    [Pg.113]    [Pg.666]    [Pg.47]    [Pg.440]    [Pg.156]    [Pg.85]   


SEARCH



Activated adsorption

Adsorption active

Adsorption activity

Surface active substances

© 2024 chempedia.info