Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sharpe peak

Figure Bl.24.13. A thin film of LaCaMn03 on an LaA103 substrate is characterized for oxygen content with 3.05 MeV helium ions. The sharp peak in the backscattering signal at chaimel 160 is due to the resonance in the scattering cross section for oxygen. The solid line is a simulation that includes the resonance scattering cross section and was obtained with RUMP [3]. Data from E B Nyeanchi, National Accelerator Centre, Fame, South Africa. Figure Bl.24.13. A thin film of LaCaMn03 on an LaA103 substrate is characterized for oxygen content with 3.05 MeV helium ions. The sharp peak in the backscattering signal at chaimel 160 is due to the resonance in the scattering cross section for oxygen. The solid line is a simulation that includes the resonance scattering cross section and was obtained with RUMP [3]. Data from E B Nyeanchi, National Accelerator Centre, Fame, South Africa.
Figure B3.4.11. (a) Reaction probability for a 4D study of the dissociation of incident U2 on CO. The probability exhibits sharp peaks whenever the energy matches that of a resonance wavefiinction. (b) Plot of... Figure B3.4.11. (a) Reaction probability for a 4D study of the dissociation of incident U2 on CO. The probability exhibits sharp peaks whenever the energy matches that of a resonance wavefiinction. (b) Plot of...
A very important characteristic of spin-spin splitting is that protons that have the same chemical shift do not split each other s signal Ethane for example shows only a single sharp peak m its NMR spectrum Even though there is a vicinal relationship between the protons of one methyl group and those of the other they do not split each other s signal because they are equivalent... [Pg.537]

We know from Chapter 3 that the protons m cyclohexane exist m two different envi ronments axial and equatorial The NMR spectrum of cyclohexane however shows only a single sharp peak at 8 1 4 All the protons of cyclohexane appear to be equivalent m the NMR spectrum Why" ... [Pg.545]

Whereas at the lower end of its range mercury porosimetry overlaps with the gas adsorption method, at its upper end it overlaps with photomicrography. An instructive example is provided by the work of Dullien and his associates on samples of sandstone. By stereological measurements they were able to arrive at a curve of pore size distribution, which was extremely broad and extended to very coarse macropores the size distribution from mercury porosimetry on the other hand was quite narrow and showed a sharp peak at a much lower figure, 10nm (Fig. 3.31). The apparent contradiction is readily explained in terms of wide cavities which are revealed by photomicrography, and are entered through narrower constrictions which are shown up by mercury porosimetry. [Pg.180]

If solid samples are vaporized quickly, then the sample enters the flame as a small plug and the elements must be measured over a short period of time. This mode is useful for high sensitivity because the entire sample passes through the flame in a short time. (The abundances of ions appear as a sharp peak on the output.) If samples are introduced continuously, then ultimate sensitivity may be reduced, but isotope ratios can be determined continuously to provide high accuracy. [Pg.398]

Figure 4.7c illustrates how x-ray diffraction techniques can be applied to the problem of evaluating 6. If the intensity of scattered x-rays is monitored as a function of the angle of diffraction, a result like that shown in Fig. 4.7c is obtained. The sharp peak is associated with the crystalline diffraction, and the broad peak, with the amorphous contribution. If the area A under each of the peaks is measured, then... [Pg.229]

Polydisperse polymers do not yield sharp peaks in the detector output as indicated in Fig. 9.14. Instead, broad bands are produced which reflect the polydispersity of synthetic polymers. Assuming that suitable calibration data are available, we can construct molecular weight distributions from this kind of experimental data. An indication of how this is done is provided in the following example. [Pg.644]

By trapping PX at liquid nitrogen temperature and transferring it to THF at —80° C, the nmr spectmm could be observed (9). It consists of two sharp peaks of equal area at chemical shifts of 5.10 and 6.49 ppm downfield from tetramethylsilane (TMS). The fact that any sharp peaks are observed at all attests to the absence of any significant concentration of unpaired electron spins, such as those that would be contributed by the biradical (11). Furthermore, the chemical shift of the ring protons, 6.49 ppm, is well upheld from the typical aromatic range and more characteristic of an oletinic proton. Thus the olefin stmcture (1) for PX is also supported by nmr. [Pg.429]

Fig. 1. Structures of (O) atoms and corresponding electron and x-ray diffraction patterns for (a) a periodic arrangement exhibiting translational symmetry where the bright dots and sharp peaks prove the periodic symmetry of the atoms by satisfying the Bragg condition, and (b) in a metallic glass where the atoms are nonperiodic and have no translational symmetry. The result of this stmcture is that the diffraction is diffuse. Fig. 1. Structures of (O) atoms and corresponding electron and x-ray diffraction patterns for (a) a periodic arrangement exhibiting translational symmetry where the bright dots and sharp peaks prove the periodic symmetry of the atoms by satisfying the Bragg condition, and (b) in a metallic glass where the atoms are nonperiodic and have no translational symmetry. The result of this stmcture is that the diffraction is diffuse.
Electron spin resonance (esr) (6,44) has had more limited use in coal studies. A rough estimate of the free-radical concentration or unsatisfied chemical bonds in the coal stmcture has been obtained as a function of coal rank and heat treatment. For example, the concentration increases from 2 X 10 radicals/g at 80 wt % carbon to a sharp peak of about 50 x 10 radicals/g at 95 wt % carbon content and drops almost to zero at 97 wt % carbon. The concentration of these radicals is less than that of the common functional groups such as hydroxyl. However, radical existence seems to be intrinsic to the coal molecule and may affect the reactivity of the coal as well as its absorption of ultraviolet radiation. Measurements from room... [Pg.220]

The c/s-fused diaziridines (31a) and (31b) are also an equilibrium system, interchanging exo and endo positions of methyl and ethyl groups. The NMR spectrum shows two methyl peaks at 0 °C, coalescing to a single sharp peak at 75 °C. The ethyl group shows the sharp characteristic quartet-triplet splitting pattern at 75 °C (74JOC3187). [Pg.201]

Infrared, nuclear magnetic resonance, ultraviolet, optical rotary dispersion and circular dichroism measurements have been used for the spectral analysis of thiiranes. A few steroidal thiiranes have been reported to possess infrared absorption in the range from 580 to 700 cm The intermediate thiocyanate derivatives (RSCN) have a strong sharp peak at 2130-2160 cm the isomeric isothiocyanate (RNCS) shows a much stronger but broad band at 2040-2180 cm. ... [Pg.42]

The earliest tables were compiled from data collected from nuclear weapon tests, in which very high yield devices produced sharp-peaked shock waves with long durations for the positive phase. However, these data are used for other types of blast waves as well. Caution should be exercised in application of these simple criteria to buildings or structures, especially for vapor cloud explosions, which can produce blast waves with totally different shapes. Application of criteria from nuclear tests can, in many cases, result in overestimation of structural damage. [Pg.347]

Flow markers are often chosen to be chemically pure small molecules that can fully permeate the GPC packing and elute as a sharp peak at the total permeation volume (Vp) of the column. Examples of a few common flow markers reported in the literature for nonaqueous GPC include xylene, dioctyl phthalate, ethylbenzene, and sulfur. The flow marker must in no way perturb the chromatography of the analyte, either by coeluting with the analyte peak of interest or by influencing the retention of the analyte. In all cases it is essential that the flow marker experience no adsorption on the stationary phase of the column. The variability that occurs in a flow marker when it experiences differences in how it adsorbs to a column is more than sufficient to obscure the flow rate deviations that one is trying to monitor and correct for. [Pg.549]

The H NMR spectra of acetic acid and acetamide are quite different. The OH proton generates a single sharp peak at room temperature, while the NHi protons generate a broad, double-humped peak that turns into two sharp peaks at lower temperatures. This suggests that the NH, protons occupy different chemical environments, while the OH proton occupies a single environment. [Pg.148]

A partial solution to the problem of producing sharp peaks at low elution temperatures is to add a small amount of a higher-boiling co-solvent to the main solvent. As suggested by Grob and Muller (23, 24), butoxyethanol can be used as a suitable cosolvent for aqueous mixtures in such cases. [Pg.29]


See other pages where Sharpe peak is mentioned: [Pg.2306]    [Pg.394]    [Pg.397]    [Pg.538]    [Pg.662]    [Pg.378]    [Pg.7]    [Pg.149]    [Pg.178]    [Pg.430]    [Pg.480]    [Pg.371]    [Pg.374]    [Pg.383]    [Pg.55]    [Pg.211]    [Pg.517]    [Pg.290]    [Pg.140]    [Pg.32]    [Pg.167]    [Pg.106]    [Pg.412]    [Pg.703]    [Pg.149]    [Pg.552]    [Pg.538]    [Pg.156]    [Pg.70]    [Pg.102]    [Pg.384]    [Pg.302]   
See also in sourсe #XX -- [ Pg.54 ]




SEARCH



Clear sharp peak

First Sharp Diffraction Peak

First Sharp Diffraction Peak Anomalies

Sharp

Sharpe

Sharpness

© 2024 chempedia.info