Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Static interfacial tension

Strategic Planning Basic Protocol 1 Static Interfacial Tension Determination at a Liquid/Gas D3.6.1... [Pg.565]

This unit will introduce two fundamental protocols—the Wilhelmy plate method (see Basic Protocol 1 and Alternate Protocol 1) and the du Noiiy ring method (see Alternate Protocol 2)—that can be used to determine static interfacial tension (Dukhin et al., 1995). Since the two methods use the same experimental setup, they will be discussed together. Two advanced protocols that have the capability to determine dynamic interfacial tension—the drop volume technique (see Basic Protocol 2) and the drop shape method (see Alternate Protocol 3)—will also be presented. The basic principles of each of these techniques will be briefly outlined in the Background Information. Critical Parameters as well as Time Considerations for the different tests will be discussed. References and Internet Resources are listed to provide a more in-depth understanding of each of these techniques and allow the reader to contact commercial vendors to obtain information about costs and availability of surface science instrumentation. [Pg.631]

The choice between the static methods (Wilhelmy plate method and the du Noiiy ring method) should primarily be based on the properties of the system being studied, in particular, the surfactant. As mentioned in UNITD3.5, the transport of surfactant molecules from the bulk to the surface requires a finite amount of time. Since static interfacial tension measurements do not yield information about the true age of the interface, it is conceivable that the measured interfacial tension values may not correspond to equilibrium interfacial tension values (i.e., the exchange of molecules between the bulk and the interface has not yet reached full equilibrium and the interfacial tension values are therefore not static). If the surfactant used in the experiment adsorbs within a few seconds, which is the case for small-molecule surfactants, then both the Wilhelmy plate method and the du Noiiy ring method are adequate. If the adsorption of a surfactant requires more time to reach full equilibrium, then the measurement should not be conducted until the interfacial tension values have stabilized. Since interfacial tension values are continuously displayed with... [Pg.631]

STATIC INTERFACIAL TENSION DETERMINATION AT A LIQUID/GAS INTERFACE BY THE WILHEMY PLATE METHOD... [Pg.633]

The basic setup to determine static interfacial tension based on either the Wilhelmy plate method or the du Noiiy ring method (see Alternate Protocol 2) is shown in Figure D3.6.1. It consists of a force (or pressure) transducer mounted in the top of the tensiometer. A small platinum (Wilhelmy) plate or (du Noiiy) ring can be hooked into the force transducer. The sample container, which in most cases is a simple glass beaker, is located on a pedestal beneath the plate/ring setup. The height of the pedestal can be manually or automatically increased or decreased so that the location of the interface of the fluid sample relative to the ring or plate can be adjusted. The tensiometer should preferably rest on vibration dampers so that external vibrations do not affect the sensitive force transducer. The force transducer and motor are connected to an input/output control box that can be used to transmit the recorded interfacial tension data to an external input device such as a monitor, printer, or computer. The steps outlined below describe measurement at a liquid/gas interface. For a liquid/liquid interface, see the modifications outlined in Alternate Protocol 1. Other variations of the standard Wilhelmy plate method exist (e.g., the inclined plate method), which can also be used to determine static interfacial tension values (see Table D3.6.1). [Pg.633]

An almost overwhelmingly large number of different techniques for measuring dynamic and static interfacial tension at liquid interfaces is available. Since many of the commercially available instruments are fairly expensive to purchase (see Internet Resources), the appropriate selection of a suitable technique for the desired application is essential. Dukhin et al. (1995) provides a comprehensive overview of currently available measurement methods (also see Table D3.6.1). An important aspect to consider is the time range over which the adsorption kinetics of surface-active substances can be measured (Fig. D3.6.5). For applications in which small surfactant molecules are primarily used, the maximum bubble pressure (MBP) method is ideally suited, since it is the only... [Pg.639]

The theoretical foundation of the drop volume technique (DVT) was developed by Lohnstein (1908, 1913). Originally, this method was only intended to determine static interfacial tension values. Over the past 20 years, the technique has received increasing attention because of its extended ability to determine dynamic interfacial tension. DVT is suitable for both liquid/liquid and liquid/gas systems. Adsorption kinetics of surface-active substances at liquid/liquid or liquid/gas interfaces can be determined between 0.1 sec and several hours (see Fig. D3.6.5). [Pg.642]

The time required to conduct an interfacial tension experiment depends largely on the properties of the surfactants and less on the chosen measurement method. A notable exception is the drop volume technique, which, due to the measurement principle, requires substantial ly more time than the drop shape analysis method. Regardless of the method used, 1 day or more may be required to accurately determine, e.g., the adsorption isotherm (unit D3.s) of a protein. This is because, at low protein concentrations, it can take several hours to reach full equilibrium between proteins in the bulk phase and those at the surface due to structural rearrangement processes. This is especially important for static interfacial tension measurements (see Basic Protocol 1 and Alternate Protocols 1 and 2). If the interfacial tension is measured before the exchange of molecules... [Pg.645]

An excellent comprehensive review of all theoretical and practical aspects of dynamic and static interfacial tension measurements written by the most prolific authors in the field of protein adsorption. Contains a wealth of additional references that the interested reader may consult to gain additional understanding of the field of research. [Pg.646]

Static interfacial tension analysis du Nouy ring method, 635-636,640-641 vs. dynamic tension, 632 (table)... [Pg.766]

Static Interfacial Tension See Static Surface Tension. [Pg.520]

In any case, the formation of an emulsion is a dynamic process and hence, instead of the static interfacial tensions, the corresponding dynamic values are much more meaningful. The dynamic surface tension is always higher than the static value. The difference can be as high as 40 mN m and depends, in addition to the age of the interface, mainly on the kind of the surfactants and on the solution viscosity (17, 18). [Pg.179]

As mentioned previously, at the Y-shaped junction droplet formation takes place in a one-step mechanism that is determined by the viscous shear force and the interfacial tension force [11]. Because of this special feature, it was possible to directly measure the effect of interfacial tension on the droplet size using various systems with different static interfacial tensions. Water/ ethanol mixtures were used as continuous phase, and hexadecane and silicon oils as to-be-dispersed phase. The size of the droplets was recorded and a calibration curve constructed, and based on that curve, the dynamic interfacial tension could be estimated in systems that contain surfactants. [Pg.1000]

Drop and bubble shape tensiometry is a modem and very effective tool for measuring dynamic and static interfacial tensions. An automatic instrument with an accurate computer controlled dosing system is discussed in detail. Due to an active control loop experiments under various conditions can be performed constant drop/bubble volume, surface area, or height, trapezoidal, ramp type, step type and sinusoidal area changes. The theoretical basis of the method, the fitting procedure to the Gauss-Laplace equation and the key procedures for calibration of the instrument are analysed and described. [Pg.440]

Effect of Surfactants. For dilute dispersions, the presence of surfactants influences drop size only by reducing interfacial tension. To a first approximation, the drop size may be estimated within the framework developed above using the static interfacial tension in the presence of surfactant. However, drop stretching and breakup occur rapidly. As new interface is created, the rate at which surfactant diffuses to the surface may not be sufficient to maintain a constant interfacial tension. The dynamic a will vary from the static value in the presence of a surfactant to the valne for a clean interface. Phongikaroon (2001) found that for this reason, drop sizes prodnced in a rotor-stator mixer with a surfactant-laden system of known static a were larger than those produced for a clean system of the same o. [Pg.668]

Many authors have worked on drop deformation and breakup, beginning with Taylor. In 1934, he published an experimental work [138] in which a unique drop was submitted to a quasi-static deformation. Taylor provided the first experimental evidence that a drop submitted to a quasi-static flow deforms and bursts under well-defined conditions. The drop bursts if the capillary number Ca, defined as the ratio of the shear stress a over the half Laplace pressure (excess of pressure in a drop of radius R. Pl = where yint is the interfacial tension) ... [Pg.19]

The profiles of pendant and sessile bubbles and drops are commonly used in determinations of surface and interfacial tensions and of contact angles. Such methods are possible because the interfaces of static fluid particles must be at equilibrium with respect to hydrostatic pressure gradients and increments in normal stress due to surface tension at a curved interface (see Chapter 1). It is simple to show that at any point on the surface... [Pg.22]

Table D3.6.1 Suitability of Different Techniques for Determining Static and Dynamic Interfacial Tension... Table D3.6.1 Suitability of Different Techniques for Determining Static and Dynamic Interfacial Tension...
The main advantage of the static methods is cost. The equipment needed to conduct the dynamic measurements is approximately five times as expensive as the equipment required for static measurements (- 25,000 for a drop shape and drop volume analyzer versus - 5,000 for du Noiiy and Wilhelmy instruments). This is due to the additional capability of the former instruments to determine not only interfacial tension values but also the corresponding age of the interface. For more information on equipment, costs, and suppliers, see Internet Resources. [Pg.632]


See other pages where Static interfacial tension is mentioned: [Pg.5]    [Pg.5]    [Pg.238]    [Pg.1418]    [Pg.290]    [Pg.48]    [Pg.18]    [Pg.333]    [Pg.119]    [Pg.238]    [Pg.61]    [Pg.308]    [Pg.85]    [Pg.429]    [Pg.419]    [Pg.422]    [Pg.565]    [Pg.620]    [Pg.631]    [Pg.631]    [Pg.632]    [Pg.632]    [Pg.634]    [Pg.636]    [Pg.638]    [Pg.640]    [Pg.642]    [Pg.644]   
See also in sourсe #XX -- [ Pg.527 ]




SEARCH



Interfacial tension

Static and Dynamic Interfacial Tension Analysis

Static tension

© 2024 chempedia.info