Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical fluids sample extraction

The usual means of identifying and quantifying the level of these additives in polymer samples is performed by dissolution of the polymer in a solvent, followed by precipitation of the material. The additives in turn remain in the Supernatant liquid. The different solubilites of the additives, high reactivity, low stability, low concentrations and possible co-precipitation with the polymer may pose problems and lead to inconclusive results. Another sample pretreatment method is the use of Soxhlet extraction and reconcentration before analysis, although this method is very time consuming, and is still limited by solubility dependence. Other approaches include the use of supercritical fluids to extract the additives from the polymer and Subsequent analysis of the extracts by microcolumn LC (2). [Pg.304]

Metabolites of chlorobenzene in biological materials cannot be determined in routine practice because of the lack of standard methods for measuring these metabolites. Further research on supercritical fluid (SCF) extraction holds great promise for meeting the goals of quantitative, rapid, easily performed, low cost, and safe procedures for the determination of nonpolar organic analytes such as chlorobenzene in biological samples. [Pg.67]

The extraction medium in SFE is supplied from a cylinder to a pump where it is compressed to the desired pressure in the critical range. Next, the fluid in this form reaches the vessel containing a sample situated in a chamber heated to the critical temperature. Here, the substance, already in the supercritical fluid state, extracts the analytes, and the extract is collected in a special receiver. Figure 19.6 shows a diagram of the instruments used for SFE. [Pg.450]

Many of the same properties that make supercritical fluids advantageous in chromatography also enhance their ability to extract compounds from within a sample matrix.(4) Also, since the solubility of most compounds is dependent on the density of the supercritical fluid, selective extraction is possible. (J5) These properties are well known, and have been exploited in some cases where the extraction was formerly done with a liquid. In many cases, the quality of extract is higher, and extractions are of higher efficiency than with liquids. Supercritical fluids, especially CO, are also often less expensive, less toxic and less flammable than their organic liquid phase counterparts. [Pg.190]

Supercritical fluid extraction (SFE) utilizes the properties of supercritical fluids for extraction of analytes from solid samples. A supercritical fluid (SCF) is a substance above its critical temperature and pressure, when it is between the typical gas and liquid state. Low viscosity and near-zero surface tension and heat of vaporization allow SCFs to penetrate into solids more rapidly than liquid solvents, which leads to more favorable mass transfer. The density of an SCF is close to the liquid density. [Pg.144]

Increased effort has been directed to the application of supercritical fluids for extraction of environmental samples. The range of fluids that has been examined, details of the extraction and collection procedures, and a comparison with conventional procedures for extraction have been given (Bowadt and Hawthorne 1995). An extensive review that covers both supercritical fluid chromatography and supercritical fluid extraction has been given (Chester et al. 1998) and includes 533 references. The following is therefore a highly selective and compromised summary. [Pg.49]

Removing an analyte from a matrix using supercritical fluid extraction (SEE) requires knowledge about the solubiUty of the solute, the rate of transfer of the solute from the soHd to the solvent phase, and interaction of the solvent phase with the matrix (36). These factors collectively control the effectiveness of the SEE process, if not of the extraction process in general. The range of samples for which SEE has been appHed continues to broaden. Apphcations have been in the environment, food, and polymers (37). [Pg.242]

The development of methods of analysis of tria2ines and thek hydroxy metabohtes in humic soil samples with combined chromatographic and ms techniques has been described (78). A two-way approach was used for separating interfering humic substances and for performing stmctural elucidation of the herbicide traces. Humic samples were extracted by supercritical fluid extraction and analy2ed by both hplc/particle beam ms and a new ms/ms method. The new ms /ms unit was of the tandem sector field-time-of-flight/ms type. [Pg.246]

Numerous high pressure Hquid chromatographic techniques have been reported for specific sample forms vegetable oHs (55,56), animal feeds (57,58), seta (59,60), plasma (61,62), foods (63,64), and tissues (63). Some of the methods requite a saponification step to remove fats, to release tocopherols from ceHs, and/or to free tocopherols from their esters. AH requite an extraction step to remove the tocopherols from the sample matrix. The methods include both normal and reverse-phase hplc with either uv absorbance or fluorescence detection. AppHcation of supercritical fluid (qv) chromatography has been reported for analysis of tocopherols in marine oHs (65). [Pg.148]

Analytical Supercritical Fluid Extraction and Chromatography Supercritical fluids, especially CO9, are used widely to extrac t a wide variety of solid and hquid matrices to obtain samples for analysis. Benefits compared with conventional Soxhlet extraction include minimization of solvent waste, faster extraction, tunabihty of solvent strength, and simple solvent removal with minimal solvent contamination in the sample. Compared with high-performance liquid chromatography, the number of theoretical stages is higher in... [Pg.2004]

Supercritical fluid extraction (SFE) and Solid Phase Extraction (SPE) are excellent alternatives to traditional extraction methods, with both being used independently for clean-up and/or analyte concentration prior to chromatographic analysis. While SFE has been demonstrated to be an excellent method for extracting organic compounds from solid matrices such as soil and food (36, 37), SPE has been mainly used for diluted liquid samples such as water, biological fluids and samples obtained after-liquid-liquid extraction on solid matrices (38, 39). The coupling of these two techniques (SPE-SFE) turns out to be an interesting method for the quantitative transfer... [Pg.139]

S. A. Westwood (Ed.), Supercritical Fluid Extraction and its Use in Chromatographic Sample Preparation, CRC Press, Boca Raton, PE (1992). [Pg.148]

A method which uses supercritical fluid/solid phase extraction/supercritical fluid chromatography (SE/SPE/SEC) has been developed for the analysis of trace constituents in complex matrices (67). By using this technique, extraction and clean-up are accomplished in one step using unmodified SC CO2. This step is monitored by a photodiode-array detector which allows fractionation. Eigure 10.14 shows a schematic representation of the SE/SPE/SEC set-up. This system allowed selective retention of the sample matrices while eluting and depositing the analytes of interest in the cryogenic trap. Application to the analysis of pesticides from lipid sample matrices have been reported. In this case, the lipids were completely separated from the pesticides. [Pg.241]

In order to reduce or eliminate off-line sample preparation, multidimensional chromatographic techniques have been employed in these difficult analyses. LC-GC has been employed in numerous applications that involve the analysis of poisonous compounds or metabolites from biological matrices such as fats and tissues, while GC-GC has been employed for complex samples, such as arson propellants and for samples in which special selectivity, such as chiral recognition, is required. Other techniques include on-line sample preparation methods, such as supercritical fluid extraction (SFE)-GC and LC-GC-GC. In many of these applications, the chromatographic method is coupled to mass spectrometry or another spectrometiic detector for final confirmation of the analyte identity, as required by many courts of law. [Pg.407]

Although on-line sample preparation cannot be regarded as being traditional multidimensional chromatography, the principles of the latter have been employed in the development of many on-line sample preparation techniques, including supercritical fluid extraction (SFE)-GC, SPME, thermal desorption and other on-line extraction methods. As with multidimensional chromatography, the principle is to obtain a portion of the required selectivity by using an additional separation device prior to the main analytical column. [Pg.427]

The coupling of supercritical fluid extraction (SEE) with gas chromatography (SEE-GC) provides an excellent example of the application of multidimensional chromatography principles to a sample preparation method. In SEE, the analytical matrix is packed into an extraction vessel and a supercritical fluid, usually carbon dioxide, is passed through it. The analyte matrix may be viewed as the stationary phase, while the supercritical fluid can be viewed as the mobile phase. In order to obtain an effective extraction, the solubility of the analyte in the supercritical fluid mobile phase must be considered, along with its affinity to the matrix stationary phase. The effluent from the extraction is then collected and transferred to a gas chromatograph. In his comprehensive text, Taylor provides an excellent description of the principles and applications of SEE (44), while Pawliszyn presents a description of the supercritical fluid as the mobile phase in his development of a kinetic model for the extraction process (45). [Pg.427]

General trends are focused on reduced-solvent extractions or adsorption-based methods — enviromnentaUy friendly solvents for both solid and liquid samples. In recent decades, advanced techniques like supercritical fluid extraction (SFE), ° pressurized liquid extraction (PLE)," microwave-assisted extraction (MAE), ultrasound-assisted extraction, countercurrent continued extraction (www.niroinc.com), solid... [Pg.304]

Separation and detection methods A survey on determination of tin species in environmental samples has been published by Leroy et al. (1998). A more detailed overview of GS-MS methodology has been published by Morabito et al. 1995) and on sample preparation using supercritical fluid extraction has been described by Bayona (1995)- The techniques are now under control, so that routine procedures are available at a relatively low cost (Leroy et al. 1998). [Pg.82]

Extraction of residues from soil samples is much more difficult than their extraction from plant or water samples. The pesticide residues in the soil exist often in several forms as bound residue , which may affect the extraction efficiency of pesticides from the soil. Then, various extraction methods such as organic solvent extraction, Soxhlet extraction, sonication extraction, microwave dissolution and supercritical fluid extraction (SEE) are used. Some extraction methods are described in the following. [Pg.337]

The most widely employed techniques for the extraction of water samples for triazine compounds include liquid-liquid extraction (LLE), solid-phase extraction (SPE), and liquid-solid extraction (LSE). Although most reports involving SPE are off-line procedures, there is increasing interest and subsequently increasing numbers of reports regarding on-line SPE, the goal of which is to improve overall productivity and safety. To a lesser extent, solid-phase microextraction (SPME), supercritical fluid extraction (SEE), semi-permeable membrane device (SPMD), and molecularly imprinted polymer (MIP) techniques have been reported. [Pg.416]

Supercritical fluid extraction (SFE) is generally used for the extraction of selected analytes from solid sample matrices, but applications have been reported for aqueous samples. In one study, recoveries of 87-100% were obtained for simazine, propazine, and trietazine at the 0.05 ug mL concentration level using methanol-modified CO2 (10%, v/v) to extract the analytes, previously preconcentrated on a C-18 Empore extraction disk. The analysis was performed using LC/UV detection. Freeze-dried water samples were subjected to SFE for atrazine and simazine, and the optimum recoveries were obtained using the mildest conditions studied (50 °C, 20 MPa, and 30 mL of CO2). In some cases when using LEE and LC analysis, co-extracted humic substances created interference for the more polar metabolites when compared with SFE for the preparation of the same water sample. ... [Pg.428]

Numerous applications of SEE were published during the 1980s soon after the availability of commercial instrumentation. Supercritical fluids (SFs) have useful characteristics for the extraction of trace analytes from solid samples, most notably... [Pg.432]

SEE is an instrumental approach not unlike PLE except that a supercritical fluid rather than a liquid is used as the extraction solvent. SFE and PLE employ the same procedures for preparing samples and loading extraction vessels, and the same concepts of static and dynamic extractions are also pertinent. SFE typically requires higher pressure than PLE to maintain supercritical conditions and, for this reason, SFE usually requires a restrictor to control better the flow and pressure of the extraction fluid. CO2 is by far the most common solvent used in SFE owing to its relatively low critical point (78 atm and 31 °C), extraction properties, availability, gaseous natural state, and safety. [Pg.758]


See other pages where Supercritical fluids sample extraction is mentioned: [Pg.30]    [Pg.427]    [Pg.5]    [Pg.163]    [Pg.334]    [Pg.91]    [Pg.614]    [Pg.1060]    [Pg.62]    [Pg.215]    [Pg.546]    [Pg.226]    [Pg.242]    [Pg.2004]    [Pg.65]    [Pg.116]    [Pg.136]    [Pg.144]    [Pg.284]    [Pg.284]    [Pg.303]    [Pg.522]    [Pg.435]    [Pg.696]    [Pg.758]   
See also in sourсe #XX -- [ Pg.660 , Pg.662 ]




SEARCH



Extractants supercritical fluid

Extraction, sampling

Fluid extraction

Fluid samples

Fluid sampling

Sample extract

Sample extraction

Sample preparation supercritical fluid extraction

Sampling extractive

Supercritical extractants

Supercritical extraction

Supercritical fluid extraction

Supercritical fluid extraction fluids

Supercritical fluid extraction sample collection

Supercritical fluid extraction sample pretreatment

© 2024 chempedia.info