Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical fluid extraction sample pretreatment

Before the extraction procedure may commence, the sample must be prepared in such a way that it is in a condition for extraction of the analyte(s). For analyzing sulfonamide residues in liquid samples such as milk, a pretreatment dilution step with water prior to direct fluorometric detection may be required (207). Dilution of milk with aqueous buffer (208) or sodium chloride solution (209) prior to sample cleanup has also been reported. For the analysis of honey a simple dissolution of the sample in water (210, 211) or aqueous buffer (212) is generally required. Semisolid samples such as muscle, kidney, and liver, require, however, more intensive sample pretreatment. The analyte(s) must be exposed to extracting solvents to ensure maximum extraction. The most popular approach for tissue break-up is through use of a mincing and/or homogenizing apparatus. Lyophilization (freeze-drying) of swine kidney has been carried out prior to supercritical-fluid extraction of trimethoprim residues (213). [Pg.962]

There are many sample preparation procedures published in the scientific literature, and within the scope of this chapter, only the most current and popular methods will be discussed. By far, the commonest and most popular method used for pretreatment of liquid samples is solid phase extraction (SPE) [40,41]. For solid samples, several techniques are available including supercritical fluid extraction (SFE) [42,43], microwave-assisted solvent extraction (MASE) [44,45] and accelerated solvent extraction (ASE) [46,47]. Solvent extraction methods have long been established as the standard approach to sample preparation, but the increasingly demanding needs of industries like the pharmaceutical, agrochemical and petrochemical for greater productivity, faster assays, and increased automation have led to the development of newer ways of sample preparation summarised in Fig. 2.3. [Pg.43]

Extraction and sample preparation are of importance in plant analysis. Clinic and forensic analyses usually rely on appropriate sample preparation to achieve a sufficiently low limit of detection. The pretreatment procedure before the chromatographic measurement must ensure exhaustive extraction of the analyte and removal of matrix that may interfere with analysis. Sample preparation methods for analysis of Catharanthus alkaloids include liquid-liquid extraction (LEE), supercritical fluid extraction (SEE), and molecularly imprinted polymers (MlPs)-based extraction. [Pg.4328]

In addition to SPE, other sample pretreatment methods have been combined with GC-MS (see Goosens and co-workers), LC-MS or to MS(-MS) directly, e.g. on line membrane sample introduction, solid-phase micro extraction (SPME), supercritical fluid extraction and membrane dialysis. [Pg.845]

The usual means of identifying and quantifying the level of these additives in polymer samples is performed by dissolution of the polymer in a solvent, followed by precipitation of the material. The additives in turn remain in the Supernatant liquid. The different solubilites of the additives, high reactivity, low stability, low concentrations and possible co-precipitation with the polymer may pose problems and lead to inconclusive results. Another sample pretreatment method is the use of Soxhlet extraction and reconcentration before analysis, although this method is very time consuming, and is still limited by solubility dependence. Other approaches include the use of supercritical fluids to extract the additives from the polymer and Subsequent analysis of the extracts by microcolumn LC (2). [Pg.304]

In normal high pressure liquid chromatography, typical sample volumes are 20-200 p.L this can become as little as 1 nL in capillary HPLC. Pretreatment of the sample may be necessary in order to protect the stationary phase in the column from deactivation. By employing supercritical fluids such as carbon dioxide, pretreatment can be bypassed in many instances so that whole samples from industrial and environmental matrices can be introduced directly into the column. This is due to the fact that the fluid acts as both extraction solvent and mobile phase. Post-column electrochemistry has been demonstrated. For example, fast-scan cyclic voltammo-grams have been recorded as a function of time after injection of microgram samples of ferrocene and other compounds in dichloromethane solvent and which are eluted with carbon dioxide at pressures of the order of 100 atm and temperatures of 50°C the chromatogram is constructed as a plot of peak current vs. time [18]. [Pg.577]

The most common extraction techniques for semivolatile and nonvolatile compounds from solid samples that can be coupled on-line with chromatography are liquid-solid extractions enhanced by microwaves, ultrasound sonication or with elevated temperature and pressures, and extraction with supercritical fluid. Elevated temperatures and the associated high mass-transfer rates are often essential when the goal is quantitative and reproducible extraction. In the case of volatile compounds, the sample pretreatment is typically easier, and solvent-free extraction methods, such as head-space extraction and thermal desorption/extraction cmi be applied. In on-line systems, the extraction can be performed in either static or dynamic mode, as long as the extraction system allows the on-line transfer of the extract to the chromatographic system. Most applications utilize dynamic extraction. However, dynamic extraction is advantageous in many respects, since the analytes are removed as soon as they are transferred from the sample to the extractant (solvent, fluid or gas) and the sample is continuously exposed to fresh solvent favouring further transfer of analytes from the sample matrix to the solvent. [Pg.111]


See other pages where Supercritical fluid extraction sample pretreatment is mentioned: [Pg.303]    [Pg.22]    [Pg.447]    [Pg.94]    [Pg.235]    [Pg.9]    [Pg.558]    [Pg.290]    [Pg.8]    [Pg.1300]    [Pg.59]   
See also in sourсe #XX -- [ Pg.108 ]




SEARCH



Extractants supercritical fluid

Extraction, sampling

Fluid extraction

Fluid samples

Fluid sampling

Sample extract

Sample extraction

Sample pretreatment

Sampling extractive

Supercritical extractants

Supercritical extraction

Supercritical fluid extraction

Supercritical fluid extraction fluids

Supercritical fluids sample extraction

© 2024 chempedia.info