Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical detection

Liquid phase chromatography can use a supercritical fluid as an eluent. The solvent evaporates on leaving the column and allows detection by FID. At present, there are few instances in the petroleum industry using the supercritical fluid technique. [Pg.27]

The use of separation techniques, such as gel permeation and high pressure Hquid chromatography interfaced with sensitive, silicon-specific aas or ICP detectors, has been particularly advantageous for the analysis of siUcones in environmental extracts (469,483—486). Supercritical fluid chromatography coupled with various detection devices is effective for the separation of siUcone oligomers that have molecular weights less than 3000 Da. Time-of-flight secondary ion mass spectrometry (TOF-sims) is appHcable up to 10,000 Da (487). [Pg.60]

Numerous high pressure Hquid chromatographic techniques have been reported for specific sample forms vegetable oHs (55,56), animal feeds (57,58), seta (59,60), plasma (61,62), foods (63,64), and tissues (63). Some of the methods requite a saponification step to remove fats, to release tocopherols from ceHs, and/or to free tocopherols from their esters. AH requite an extraction step to remove the tocopherols from the sample matrix. The methods include both normal and reverse-phase hplc with either uv absorbance or fluorescence detection. AppHcation of supercritical fluid (qv) chromatography has been reported for analysis of tocopherols in marine oHs (65). [Pg.148]

E. S. Erancis, M. Wu, R B. Eamswoith and M. L. Lee, Supercritical fluid extraaion/gas cliromatography with thermal desorption modulator interface and niti O-specific detection for the analysis of explosives , 7. Microcolumn Sep. 7 23-28 (1995). [Pg.149]

Supercritical fluid extraction (SFE) has been extensively used for the extraction of volatile components such as essential oils, flavours and aromas from plant materials on an industrial as well as an analytical scale (61). The extract thus obtained is usually analysed by GC. Off-line SFE-GC is frequently employed, but on-line SEE-GC has also been used. The direct coupling of SEE with supercritical fluid chromatography (SEC) has also been successfully caried out. Coupling SEE with SEC provides several advantages for the separation and detection of organic substances low temperatures can be used for both SEE and SEC, so they are well suited for the analysis of natural materials that contain compounds which are temperature-sensitive, such as flavours and fragrances. [Pg.241]

Figure 11.16 Chromatograms of plasma samples obtained by using SPE-SFC with super-aitical desorption of the SPE cartridge (a) blank plasma (20 p.1), UV detection at 215 nm (b) blank plasma (20 p.1), UV detection at 360 nm (c) plasma (1 ml) containing 20 ng mitomycin C (MMC), UV detection at 360 nm. Reprinted from Journal of Chromatography, 454, W. M. A. Niessen et al., Phase-system switching as an on-line sample pretreatment in the bioanalysis of mitomycin C using supercritical fluid cliromatography, pp. 243-251, copyright 1988, with permission from Elsevier Science. Figure 11.16 Chromatograms of plasma samples obtained by using SPE-SFC with super-aitical desorption of the SPE cartridge (a) blank plasma (20 p.1), UV detection at 215 nm (b) blank plasma (20 p.1), UV detection at 360 nm (c) plasma (1 ml) containing 20 ng mitomycin C (MMC), UV detection at 360 nm. Reprinted from Journal of Chromatography, 454, W. M. A. Niessen et al., Phase-system switching as an on-line sample pretreatment in the bioanalysis of mitomycin C using supercritical fluid cliromatography, pp. 243-251, copyright 1988, with permission from Elsevier Science.
K. Haitonen and M. L. Riekkola, Detection of /3-blockers in urine by solid-phase extraction-supercritical fluid exti action and gas cliromatogi aphy-mass spectrometi y , 7. Chromatogr. B 676 45-52 (1996). [Pg.300]

An on-line supercritical fluid chromatography-capillary gas chromatography (SFC-GC) technique has been demonstrated for the direct transfer of SFC fractions from a packed column SFC system to a GC system. This technique has been applied in the analysis of industrial samples such as aviation fuel (24). This type of coupled technique is sometimes more advantageous than the traditional LC-GC coupled technique since SFC is compatible with GC, because most supercritical fluids decompress into gases at GC conditions and are not detected by flame-ionization detection. The use of solvent evaporation techniques are not necessary. SFC, in the same way as LC, can be used to preseparate a sample into classes of compounds where the individual components can then be analyzed and quantified by GC. The supercritical fluid sample effluent is decompressed through a restrictor directly into a capillary GC injection port. In addition, this technique allows selective or multi-step heart-cutting of various sample peaks as they elute from the supercritical fluid... [Pg.325]

Figure 12.20 SFC-GC analysis of a sample of aviation fuel (a) SFC separation into two peaks (b and c) coixesponding GC ttaces of the respective peaks (flame-ionization detection used throughout). Reprinted from Journal of High Resolution Chromatography, 10, J. M. Levy et ah, On-line multidimensional supercritical fluid chromatography/capillary gas chromatography , pp. 337-341, 1987, with permission from Wiley-VCH. Figure 12.20 SFC-GC analysis of a sample of aviation fuel (a) SFC separation into two peaks (b and c) coixesponding GC ttaces of the respective peaks (flame-ionization detection used throughout). Reprinted from Journal of High Resolution Chromatography, 10, J. M. Levy et ah, On-line multidimensional supercritical fluid chromatography/capillary gas chromatography , pp. 337-341, 1987, with permission from Wiley-VCH.
Figure 12.22 SFC-GC analysis of aromatic fraction of a gasoline fuel, (a) SFC trace (b) GC ttace of the aromatic cut. SFC conditions four columns (4.6 mm i.d.) in series (silica, silver-loaded silica, cation-exchange silica, amino-silica) 50 °C 2850 psi CO2 mobile phase at 2.5 niL/min FID detection. GC conditions methyl silicone column (50 m X 0.2 mm i.d.) injector split ratio, 80 1 injector temperature, 250 °C earner gas helium temperature programmed, — 50 °C (8 min) to 320 °C at a rate of 5 °C/min FID detection. Reprinted from Journal of Liquid Chromatography, 5, P. A. Peaden and M. L. Lee, Supercritical fluid chromatography methods and principles , pp. 179-221, 1987, by courtesy of Marcel Dekker Inc. Figure 12.22 SFC-GC analysis of aromatic fraction of a gasoline fuel, (a) SFC trace (b) GC ttace of the aromatic cut. SFC conditions four columns (4.6 mm i.d.) in series (silica, silver-loaded silica, cation-exchange silica, amino-silica) 50 °C 2850 psi CO2 mobile phase at 2.5 niL/min FID detection. GC conditions methyl silicone column (50 m X 0.2 mm i.d.) injector split ratio, 80 1 injector temperature, 250 °C earner gas helium temperature programmed, — 50 °C (8 min) to 320 °C at a rate of 5 °C/min FID detection. Reprinted from Journal of Liquid Chromatography, 5, P. A. Peaden and M. L. Lee, Supercritical fluid chromatography methods and principles , pp. 179-221, 1987, by courtesy of Marcel Dekker Inc.
One example of normal-phase liquid chromatography coupled to gas chromatography is the determination of alkylated, oxygenated and nitrated polycyclic aromatic compounds (PACs) in urban air particulate extracts (97). Since such extracts are very complex, LC-GC is the best possible separation technique. A quartz microfibre filter retains the particulate material and supercritical fluid extraction (SPE) with CO2 and a toluene modifier extracts the organic components from the dust particles. The final extract is then dissolved in -hexane and analysed by NPLC. The transfer at 100 p.1 min of different fractions to the GC system by an on-column interface enabled many PACs to be detected by an ion-trap detector. A flame ionization detector (PID) and a 350 p.1 loop interface was used to quantify the identified compounds. The experimental conditions employed are shown in Table 13.2. [Pg.362]

Using established extraction and cleanup methods, followed by GC/FPD and GC/thermionic detection, Carey et al. (1979) obtained detection limits in the ppb range and recoveries of 80-110% in soil and 70-100% in plant tissue. Good sensitivity and recovery were maintained in a simplified extraction procedure of sediments followed by GC/FPD analysis (Belisle and Swineford 1988). Bound methyl parathion residues that were not extracted with the usual methods were extracted using supercritical methanol by Capriel et al. (1986). They were able to remove 38% of the methyl parathion residues bound to soil, but 34% remained unextractable, and 28% could not be accounted for. [Pg.182]

Separation and detection methods A survey on determination of tin species in environmental samples has been published by Leroy et al. (1998). A more detailed overview of GS-MS methodology has been published by Morabito et al. 1995) and on sample preparation using supercritical fluid extraction has been described by Bayona (1995)- The techniques are now under control, so that routine procedures are available at a relatively low cost (Leroy et al. 1998). [Pg.82]

Supercritical fluid extraction (SFE) is generally used for the extraction of selected analytes from solid sample matrices, but applications have been reported for aqueous samples. In one study, recoveries of 87-100% were obtained for simazine, propazine, and trietazine at the 0.05 ug mL concentration level using methanol-modified CO2 (10%, v/v) to extract the analytes, previously preconcentrated on a C-18 Empore extraction disk. The analysis was performed using LC/UV detection. Freeze-dried water samples were subjected to SFE for atrazine and simazine, and the optimum recoveries were obtained using the mildest conditions studied (50 °C, 20 MPa, and 30 mL of CO2). In some cases when using LEE and LC analysis, co-extracted humic substances created interference for the more polar metabolites when compared with SFE for the preparation of the same water sample. ... [Pg.428]

Supercritical fluid chromatography (SEC) was first reported in 1962, and applications of the technique rapidly increased following the introduction of commercially available instrumentation in the early 1980s due to the ability to determine thermally labile compounds using detection systems more commonly employed with GC. However, few applications of SEC have been published with regard to the determination of triazines. Recently, a chemiluminescence nitrogen detector was used with packed-column SEC and a methanol-modified CO2 mobile phase for the determination of atrazine, simazine, and propazine. Pressure and mobile phase gradients were used to demonstrate the efficacy of fhe fechnique. [Pg.442]

Some typical applications in SFE of polymer/additive analysis are illustrated below. Hunt et al. [333] found that supercritical extraction of DIOP and Topanol CA from ground PVC increased with temperature up to 90 °C at 45 MPa, then levelled off, presumably as solubility became the limiting factor. The extraction of DOP and DBP plasticisers from PVC by scC02 at 52 MPa increased from 50 to 80 °C, when extraction was almost complete in 25 min [336]. At 70 °C the amount extracted increased from 79 to 95 % for pressures from 22 to 60 MPa. SFE has the potential to shorten extraction times for traces (<20ppm) of additives (DBP and DOP) in flexible PVC formulations with similar or even better extraction efficiencies compared with traditional LSE techniques [384]. Marin et al. [336] have used off-line SFE-GC to determine the detection limits for DBP and DOP in flexible PVC. The method developed was compared with Soxhlet liquid extraction. At such low additive concentrations a maximum efficiency in the extractive process and an adequate separative system are needed to avoid interferences with other components that are present at high concentrations in the PVC formulations, such as DINP. Results obtained... [Pg.96]

A powerful advantage of SFC is that more detectors can be interfaced with SFC than with any other chromatographic technique (Table 4.30). There are only a few detectors which operate under supercritical conditions. Consequently, as the sample is transferred from the chromatograph to the detector, it must undergo a phase change from a supercritical fluid to a liquid or gas before detection. Most detectors can be made compatible with both cSFC and pSFC if flow and pressure limits are taken into account appropriately. GC-based detectors such as FID and LC-based detectors such as UVD are the most commonly used, but the detection limits of both still need to be improved to reach sensitivity for SFC compatible with that in LC and GC. Commercial cSFC-FID became available in... [Pg.210]

SFC has been widely reviewed [272-283], with particular emphasis on pSFC [284-286] and cSFC [287], SFC principles and techniques [246], instrumentation [272,288,289], columns and phases [283,290], detection [236,291], past and future [292]. Various recent monographs deal with supercritical fluids, SFE and/or SFC [293-303], some specifically with pSFC [26,304]. [Pg.213]

The number of reports on on-line TLC analysis of extracts is quite limited. Stahl [16,29] described a device for supercritical extraction with deposition of the fluid extract on to a moving TLC plate. On-line SFE-TLC provides rapid and simple insight into the extraction performance. Its strength is that the extract is deposited on a plate, which means that detection is a static process. Limitations of SFE-TLC are that quantification is difficult, and that the stability of components on the support material or in the presence of oxygen may be a problem. For additives in beverages (such as benzoic... [Pg.432]

Smith and Udseth [154] first described SFE-MS in 1983. Direct fluid injection (DFT) mass spectrometry (DFT-MS, DFI-MS/MS) utilises supercritical fluids for solvation and transfer of materials to a mass-spectrometer chemical ionisation (Cl) source. Extraction with scC02 is compatible with a variety of Cl reagents, which allow a sensitive and selective means for ionising the solute classes of interest. If the interfering effects of the sample matrix cannot be overcome by selective ionisation, techniques based on tandem mass spectrometry can be used [7]. In these cases, a cheaper and more attractive alternative is often to perform some form of chromatography between extraction and detection. In SFE-MS, on-line fractionation using pressure can be used to control SCF solubility to a limited extent. The main features of on-line SFE-MS are summarised in Table 7.20. It appears that the direct introduction into a mass spectrometer of analytes dissolved in supercritical fluids without on-line chromatography has not actively been pursued. [Pg.451]

SFC-NMR is available from 200 to 800 MHz, and is suitable for all common NMR-detected nuclei. SFC/SFE-NMR requires dedicated probe-heads for high pressure (up to 350 bar) and elevated temperature (up to 100 °C). SFC-NMR is carried out with conventional packed columns, using modifier, pressure and temperature gradients. The resolution of 1H NMR spectra obtained in SFE-NMR and SFC-NMR coupling under continuous-flow conditions approaches that of conventionally recorded NMR spectra. However, due to the supercritical measuring conditions, the 111 spin-lattice relaxation times 7) are doubled. [Pg.486]

In analytical chemistry there is an ever-increasing demand for rapid, sensitive, low-cost, and selective detection methods. When POCL has been employed as a detection method in combination with separation techniques, it has been shown to meet many of these requirements. Since 1977, when the first application dealing with detection of fluorophores was published [60], numerous articles have appeared in the literature [6-8], However, significant problems are still encountered with derivatization reactions, as outlined earlier. Consequently, improvements in the efficiency of labeling reactions will ultimately lead to significant improvements in the detection of these analytes by the POCL reaction. A promising trend is to apply this sensitive chemistry in other techniques, e.g., in supercritical fluid chromatography [186] and capillary electrophoresis [56-59], An alter-... [Pg.166]


See other pages where Supercritical detection is mentioned: [Pg.597]    [Pg.224]    [Pg.116]    [Pg.144]    [Pg.284]    [Pg.324]    [Pg.89]    [Pg.33]    [Pg.91]    [Pg.6]    [Pg.79]    [Pg.696]    [Pg.316]    [Pg.324]    [Pg.326]    [Pg.95]    [Pg.210]    [Pg.452]    [Pg.452]    [Pg.475]    [Pg.475]    [Pg.476]    [Pg.74]    [Pg.492]    [Pg.69]    [Pg.197]    [Pg.378]   
See also in sourсe #XX -- [ Pg.103 ]




SEARCH



Supercritical fluid chromatography mass spectrometric detection

© 2024 chempedia.info