Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methanol supercritical

The extraction efficiency of supercritical fluids may be enhanced by mixing into it a small amount of a cosolvent such as acetone or methanol. Supercritical fluid extraction offers certain advantages over other extraction processes (1) it is relatively a fast process with greater extraction efficiency (2) sample concentration steps may be eliminated and (3) unlike LLE or Soxhlett extraction, a large amount of organic solvents is not required. [Pg.52]

Zarzycki et al. (1982) succeeded in preparing large-size silica gel cylinder from Si(0CH3)4-CH30H-H20 sol by the use of methanol supercritical drying in an autoclave. [Pg.134]

The most common mobile phase for supercritical fluid chromatography is CO2. Its low critical temperature, 31 °C, and critical pressure, 72.9 atm, are relatively easy to achieve and maintain. Although supercritical CO2 is a good solvent for nonpolar organics, it is less useful for polar solutes. The addition of an organic modifier, such as methanol, improves the mobile phase s elution strength. Other common mobile phases and their critical temperatures and pressures are listed in Table 12.7. [Pg.596]

The principal solvents that have been used are alcohols such as ethanol, methanol, and propanol, and organic acids such as formic or acetic acid, but other solvents iaclude esters, ethers, phenols, cresols, and some amines. Even solvents such as CO2 and NH in the supercritical fluid state have been tried as solvents. [Pg.274]

Extraction from Aqueous Solutions Critical Fluid Technologies, Inc. has developed a continuous countercurrent extraction process based on a 0.5-oy 10-m column to extract residual organic solvents such as trichloroethylene, methylene chloride, benzene, and chloroform from industrial wastewater streams. Typical solvents include supercritical CO9 and near-critical propane. The economics of these processes are largely driven by the hydrophihcity of the product, which has a large influence on the distribution coefficient. For example, at 16°C, the partition coefficient between liquid CO9 and water is 0.4 for methanol, 1.8 for /i-butanol, and 31 for /i-heptanol. [Pg.2003]

Solution Polymerization These processes may retain the polymer in solution or precipitate it. Polyethylene is made in a tubular flow reactor at supercritical conditions so the polymer stays in solution. In the Phillips process, however, after about 22 percent conversion when the desirable properties have been attained, the polymer is recovered and the monomer is flashed off and recyled (Fig. 23-23 ). In another process, a solution of ethylene in a saturated hydrocarbon is passed over a chromia-alumina catalyst, then the solvent is separated and recyled. Another example of precipitation polymerization is the copolymerization of styrene and acrylonitrile in methanol. Also, an aqueous solution of acrylonitrile makes a precipitate of polyacrylonitrile on heating to 80°C (176°F). [Pg.2102]

Using established extraction and cleanup methods, followed by GC/FPD and GC/thermionic detection, Carey et al. (1979) obtained detection limits in the ppb range and recoveries of 80-110% in soil and 70-100% in plant tissue. Good sensitivity and recovery were maintained in a simplified extraction procedure of sediments followed by GC/FPD analysis (Belisle and Swineford 1988). Bound methyl parathion residues that were not extracted with the usual methods were extracted using supercritical methanol by Capriel et al. (1986). They were able to remove 38% of the methyl parathion residues bound to soil, but 34% remained unextractable, and 28% could not be accounted for. [Pg.182]

Capriel P, Haisch A, Khan SU. 1986. Supercritical methanol An efficacious technique for the extraction of bound pesticide residues from soil and plant samples. J Agric Food Chem 34 70-73. [Pg.197]

Polymer Degradation and Stability 75,No.l,2002,p.l85-91 STUDY ON METHANOLYTIC DEPOLYMERIZATION OF PET WITH SUPERCRITICAL METHANOL FOR CHEMICAL RECYCLING... [Pg.33]

The depolymerisation of PETP in supercritical methanol was caried out using a batch-type autoclave reactor. The... [Pg.36]

Industrial Engineering Chemistry Research 39, No.2, Feb.2000, p.245-9 CHEMICAL RECYCLING OF PHENOL RESIN BY SUPERCRITICAL METHANOL... [Pg.46]

DECOMPOSITION OF POLYETHYLENE 2,6-NAPHTHALENE DICARBOXYLATE TO CONSTITUENT MONOMERS USING SUPERCRITICAL METHANOL... [Pg.48]

Supercritical fluid extraction (SEE) is another modern separation technology usually employed to extract lipophilic compounds such as cranberry seed oil, lycopene, coumarins, and other seed oils. Anthocyanins generally and glycosylated anthocyanins in particular were considered unsuitable for SEE due to their hydrophilic properties, since SEE is applicable for non-polar analytes. However, a small amount of methanol was applied as co-solvent to increase CO2 polarity in anthocyanin extraction from grape pomace. New applications of SEE for anthocyanin purification have been reported for cosmetic applications from red fruits. ... [Pg.483]

Supercritical fluid extraction (SFE) is a technique in which a supercritical fluid [formed when the critical temperature Tf) and critical pressure Pf) for the fluid are exceeded simultaneously] is used as an extraction solvent instead of an organic solvent. By far the most common choice of a supercritical fluid is carbon dioxide (CO2) because CO2 has a low critical temperature (re = 31.1 °C), is inexpensive, and is safe." SFE has the advantage of lower viscosity and improved diffusion coefficients relative to traditional organic solvents. Also, if supercritical CO2 is used as the extraction solvent, the solvent (CO2) can easily be removed by bringing the extract to atmospheric pressure. Supercritical CO2 itself is a very nonpolar solvent that may not have broad applicability as an extraction solvent. To overcome this problem, modifiers such as methanol can be used to increase the polarity of the SFE extraction solvent. Another problem associated with SFE using CO2 is the co-extraction of lipids and other nonpolar interferents. To overcome this problem, a combination of SFE with SPE can be used. Stolker et al." provided a review of several SFE/SPE methods described in the literature. [Pg.306]

Supercritical fluid extraction (SFE) is generally used for the extraction of selected analytes from solid sample matrices, but applications have been reported for aqueous samples. In one study, recoveries of 87-100% were obtained for simazine, propazine, and trietazine at the 0.05 ug mL concentration level using methanol-modified CO2 (10%, v/v) to extract the analytes, previously preconcentrated on a C-18 Empore extraction disk. The analysis was performed using LC/UV detection. Freeze-dried water samples were subjected to SFE for atrazine and simazine, and the optimum recoveries were obtained using the mildest conditions studied (50 °C, 20 MPa, and 30 mL of CO2). In some cases when using LEE and LC analysis, co-extracted humic substances created interference for the more polar metabolites when compared with SFE for the preparation of the same water sample. ... [Pg.428]

Supercritical fluid chromatography (SEC) was first reported in 1962, and applications of the technique rapidly increased following the introduction of commercially available instrumentation in the early 1980s due to the ability to determine thermally labile compounds using detection systems more commonly employed with GC. However, few applications of SEC have been published with regard to the determination of triazines. Recently, a chemiluminescence nitrogen detector was used with packed-column SEC and a methanol-modified CO2 mobile phase for the determination of atrazine, simazine, and propazine. Pressure and mobile phase gradients were used to demonstrate the efficacy of fhe fechnique. [Pg.442]

SFE. SFE has been established as the extraction method of choice for solid samples. The usefulness of SFE for soil samples has been demonstrated for carbamate,organophosphorus and organochlorine pesticides. However, SFE is more effective in extracting nonpolar than polar residues. In order to obtain a greater extraction efficiency for the polar residues of imidacloprid, the addition of 20% methanol as modifier is required. Extraction at 276 bar and 80 °C with a solvent consisting of supercritical carbon dioxide modified with methanol (5%) for 40 min gives a recovery of 97% (RSD = 3.6%, n = 10). It is possible to use process-scale SFE to decontaminate pesticide residues from dust waste. ... [Pg.1140]

Methylene chloride is probably the most generally used solvent for decaffeination processes, but others, some of which are already found in small amounts in coffee beans, are coming into use. For example, ethyl acetate,8 formaldehyde-dimethylacetal, ethanol, methanol, acetone,9 propane,10 benzyl alcohol,11 carbon dioxide,12 and supercritical carbon dioxide with an acid13 are used. Generally the pressure and temperature of the system are adjusted to keep the solvent in the liquid state. Coffee oil itself is even described for this use in one patent.14... [Pg.93]

Summary Hydrophobic aerogels were prepared by base-catalyzed hydrolysis and condensation of RSi(OMe)3 (R = Me, Ph, PrI1)/Si(OMe)4 (1 4) mixtures in methanol, followed by supercritical drying of the obtained alcogels with methanol. The organic substituents also increase the elasticity of the aerogels. [Pg.323]


See other pages where Methanol supercritical is mentioned: [Pg.132]    [Pg.115]    [Pg.41]    [Pg.737]    [Pg.132]    [Pg.115]    [Pg.41]    [Pg.737]    [Pg.222]    [Pg.242]    [Pg.2004]    [Pg.176]    [Pg.284]    [Pg.138]    [Pg.33]    [Pg.36]    [Pg.37]    [Pg.48]    [Pg.67]    [Pg.144]    [Pg.187]    [Pg.311]    [Pg.21]    [Pg.301]    [Pg.475]    [Pg.386]    [Pg.434]    [Pg.729]    [Pg.84]    [Pg.100]    [Pg.210]    [Pg.46]    [Pg.74]    [Pg.323]   
See also in sourсe #XX -- [ Pg.240 ]




SEARCH



Ethanol methanol, comparison, supercritical

Methanol oxidation in supercritical water

Methanol, supercritical, organic

PET depolymerization in supercritical methanol

Supercritical fluids methanol

© 2024 chempedia.info