Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfuric acid production economics

The performance of many metal-ion catalysts can be enhanced by doping with cesium compounds. This is a result both of the low ionization potential of cesium and its abiUty to stabilize high oxidation states of transition-metal oxo anions (50). Catalyst doping is one of the principal commercial uses of cesium. Cesium is a more powerflil oxidant than potassium, which it can replace. The amount of replacement is often a matter of economic benefit. Cesium-doped catalysts are used for the production of styrene monomer from ethyl benzene at metal oxide contacts or from toluene and methanol as Cs-exchanged zeofltes ethylene oxide ammonoxidation, acrolein (methacrolein) acryflc acid (methacrylic acid) methyl methacrylate monomer methanol phthahc anhydride anthraquinone various olefins chlorinations in low pressure ammonia synthesis and in the conversion of SO2 to SO in sulfuric acid production. [Pg.378]

Fixed Bed Reactors. In its most basic form, a fixed bed reactor consists of a cylindrical tube filled with catalyst pellets. Reactants flow through the catalyst bed and are converted into products. Fixed bed reactors are often referred to as packed bed reactors. They may be regarded as the workhorse of the chemical industry with respect to the number of reactors employed and the economic value of the materials produced. Ammonia synthesis, sulfuric acid production (by oxidation of S02 to S03), and nitric acid production (by ammonia oxidation) are only a few of the extremely high tonnage processes that make extensive use of various forms of packed bed reactors. [Pg.425]

Sulfuric acid production is one alternative to the manufacture of elemental sulfur from acid gas streams. If a market for the product acid can be found, sulfuric acid may be economically attractive relative to elemental sulfur (14,15). [Pg.28]

Similar "open-cycle" scoping studies using waste SO2 from combustion flue gases and SO2 produced from sulfur show equivalent economic potential. The latter, of course, would have a higher sulfuric acid production cost because the sulfur feedstock would have an acquisition cost that must be included in the economics. Nevertheless, the cost of sulfuric acid, when tempered by the revenue obtained from the sale of hydrogen, can be extremely attractive. The reverse is also true. [Pg.395]

Supplemental processes which can be operated in conjunction with alkylation and/or sulfuric acid production can influence the overall economics. Examples are (1) the integration of normal butane-to-isobutane isomerization with alkylation, utilizing common fractionation equipment and (2), utilizing 65% sulfuric acid extraction of isobutylene or isoamylene from olefins fed to alkylation, justified by monetary return on sale of the high purity iso-olefin as a petrochemical feedstock, which reduces quantity of alkylate produced and reduces isobutane required while producing still higher quality alkylate with sulfuric acid catalyst. [Pg.319]

Sulfuric acid production in the United States is used to track chemical economic trends. [Pg.939]

The anodic protection technique now enables air coolers and tube bundles in sulfuric acid plants to be protected from corrosion reliably and economically. Anodic protection was provided for air coolers of sulfuric acid production plants for the first time in 1966. Since then, a combined cooler surface area exceeding 10,000 m in air-cooled and water-cooled sulfuric add plants has been protected in this way worldwide. The installed initial electrical direct current output of the potentiostats is >25 kW, corresponding to an energy requirement of 2.5 W/m for the surface needing protection (Kuron and Grafen 1988). [Pg.629]

Economics of Sulfuric Acid Production Capital Costs.301... [Pg.295]

The ore is crushed and ground and separated into various mineral concentrates by flotation. The complex lead-zinc ores have played an important role in the development of the flotation technique. A lead concentrate with perhaps 77% Pb is roasted to oxide, in general on a sinter band, a process in which sulfur is removed as sulfur dioxide. Limestone is added for slag formation and the sinter is reduced by coke in a shaft furnace. An alternative method is to use a rotating converter furnace, from which the sulfur dioxide can be used for sulfuric acid production. This is good for the environment and good for the economics of the process. [Pg.961]

The principal raw material source for sulfuric acid production is SO obtained on burning sulfur. In addition, the main minerals of many metals, for example, zinc, lead, copper and silver, are sulfides. A significant quantity of SOj is also obtained as a byproduct from the metallurgical treatment of these ores. Partly this is a result of laws restricting SO emissions, but partly it is also due to the desire to improve process economics. Sulfur dioxide is oxidized to the trioxide SOj in the contact process at 450°C. A catalyst is used, which has rnain component. SOj is absorbed... [Pg.1053]

The cleaned gas is discharged to the atmosphere. Sulfacid plants are most economical when their dilute sulfuric acid product can be consumed in nearby operations, for example, in titanium dioxide production or fertilizer production. [Pg.293]

The contact process was developed as a matter of urgency dining World War I because the effective nitration of toluene required the catalytic use of concentrated sulfuric acid to generate the active species, N02. Nitration of toluene, of course, yields the military explosive, TNT. The increased demand for platinum could not be met economically, so that from 1914 on vanadium caMysts had to be introduced rapidly to expand sulfuric acid production. About one-third of German sirlfuric acid at that time came from the contact process, but vanadi-irm catalysts were not used extensively in other parts of the world until the mid-1920s. [Pg.32]

Economics. In contrast to NSP, the high nutrient content of TSP makes shipment of the finished product preferable to shipping of the raw materials. Plants, therefore, are located at or near the rock source. The phosphoric acid used, and the sulfuric acid required for its manufacture, usually are produced at the site of the TSP plant. As in the case of NSP, the cost of raw materials accounts for more than 90% of the total cost. Most of this is the cost of acid. [Pg.227]

If the hydrogen could be reduced, the coproduction of hydrogen and valuable side products, eg, sulfur, sulfuric acid, and calcium sulfate, from H2S could become economically competitive. [Pg.427]

Sulfur Compounds. Various gas streams are treated by molecular sieves to remove sulfur contaminants. In the desulfurization of wellhead natural gas, the unit is designed to remove sulfur compounds selectively, but not carbon dioxide, which would occur in Hquid scmbbing processes. Molecular sieve treatment offers advantages over Hquid scmbbing processes in reduced equipment size because the acid gas load is smaller in production economics because there is no gas shrinkage (leaving CO2 in the residue gas) and in the fact that the gas is also fliUy dehydrated, alleviating the need for downstream dehydration. [Pg.456]

The choice of catalyst is based primarily on economic effects and product purity requirements. More recentiy, the handling of waste associated with the choice of catalyst has become an important factor in the economic evaluation. Catalysts that produce less waste and more easily handled waste by-products are strongly preferred by alkylphenol producers. Some commonly used catalysts are sulfuric acid, boron trifluoride, aluminum phenoxide, methanesulfonic acid, toluene—xylene sulfonic acid, cationic-exchange resin, acidic clays, and modified zeoHtes. [Pg.62]

In the United States, aluminum sulfate is usually produced by the reaction of bauxite or clay (qv) with sulfuric acid (see Sulfuric acid and sulfur trioxide). Bauxite is imported and more expensive than local clay, generally kaolin, which is more often used. Clay is first roasted to remove organics and break down the crystalline stmcture in order to make it more reactive. This is an energy intensive process. The purity of the starting clay or bauxite ore, especially the iron and potassium contents, are reflected in the assay of the final product. Thus the selection of the raw material is governed by the overall economics of producing a satisfying product. [Pg.176]

Agriculture is the largest industry for sulfur consumption. Historically, the production of phosphate fertilizers has driven the sulfur market. Phosphate fertilizers account for approximately 60% of the sulfur consumed globally. Thus, although sulfur is an important plant nutrient in itself, its greatest use in the fertilizer industry is as sulfuric acid, which is needed to break down the chemical and physical stmcture of phosphate rock to make the phosphate content more available to plant life. Other mineral acids, as well as high temperatures, also have the abiUty to achieve this result. Because of market price and availabiUty, sulfuric acid is the most economic method. About 90% of sulfur used in the fertilizer industry is for the production of phosphate fertilizers. Based on this technology, the phosphate fertilizer industry is expected to continue to depend on sulfur and sulfuric acid as a raw material. [Pg.125]

Sulfuric acid may be produced by the contact process from a wide range of sulfur-bearing raw materials by several different process variants, depending largely on the raw material used. In some cases sulfuric acid is made as a by-product of other operations, primarily as an economical or convenient means of minimising air pollution (qv) or disposing of unwanted by-products. [Pg.183]

Gas leaving the economizer flows to a packed tower where SO is absorbed. Most plants do not produce oleum and need only one tower. Concentrated sulfuric acid circulates in the tower and cools the gas to about the acid inlet temperature. The typical acid inlet temperature for 98.5% sulfuric acid absorption towers is 70—80°C. The 98.5% sulfuric acid exits the absorption tower at 100—125°C, depending on acid circulation rate. Acid temperature rise within the tower comes from the heat of hydration of sulfur trioxide and sensible heat of the process gas. The hot product acid leaving the tower is cooled in heat exchangers before being recirculated or pumped into storage tanks. [Pg.185]

Passing a stream of nitrogen at 95—100°C through a reaction mixture of ethyl ether and 30 wt % oleum prepared at 15°C results in the entrainment of diethyl sulfate. Continuous operation provides a >50% yield (96). The most economical process for the manufacture of diethyl sulfate starts with ethylene and 96 wt % sulfuric acid heated at 60°C. The resulting mixture of 43 wt % diethyl sulfate, 45 wt % ethyl hydrogen sulfate, and 12 wt % sulfuric acid is heated with anhydrous sodium sulfate under vacuum, and diethyl sulfate is obtained in 86% yield the commercial product is >99% pure (97). [Pg.201]

Production and Economic Aspects. Thallium is obtained commercially as a by-product in the roasting of zinc, copper, and lead ores. The thallium is collected in the flue dust in the form of oxide or sulfate with other by-product metals, eg, cadmium, indium, germanium, selenium, and tellurium. The thallium content of the flue dust is low and further enrichment steps are required. If the thallium compounds present are soluble, ie, as oxides or sulfates, direct leaching with water or dilute acid separates them from the other insoluble metals. Otherwise, the thallium compound is solubilized with oxidizing roasts, by sulfatization, or by treatment with alkaU. The thallium precipitates from these solutions as thaUium(I) chloride [7791 -12-0]. Electrolysis of the thaUium(I) sulfate [7446-18-6] solution affords thallium metal in high purity (5,6). The sulfate solution must be acidified with sulfuric acid to avoid cathodic separation of zinc and anodic deposition of thaUium(III) oxide [1314-32-5]. The metal deposited on the cathode is removed, kneaded into lumps, and dried. It is then compressed into blocks, melted under hydrogen, and cast into sticks. [Pg.467]

Most current industrial vitamin C production is based on the efficient second synthesis developed by Reichstein and Grbssner in 1934 (15). Various attempts to develop a superior, more economical L-ascorbic acid process have been reported since 1934. These approaches, which have met with htde success, ate summarized in Crawford s comprehensive review (46). Currently, all chemical syntheses of vitamin C involve modifications of the Reichstein and Grbssner approach (Fig. 5). In the first step, D-glucose (4) is catalytically (Ni-catalyst) hydrogenated to D-sorbitol (20). Oxidation to L-sotbose (21) occurs microhiologicaRy with The isolated L-sotbose is reacted with acetone and sulfuric acid to yield 2,3 4,6 diacetone-L-sorbose,... [Pg.14]

The sodium salt of CS [9005-22-5] is prepared by reaction of cellulose with sulfuric acid in alcohol followed by sodium hydroxide neutrali2ation (20). This water-soluble product yields relatively stable, clear, and highly viscous solutions. Introduced as a thickener for aqueous systems and an emulsion stabilizer, it is now of no economic significance. [Pg.265]

Some products are precipitated from the fermentation broth. The insoluble calcium salts of some organic acids precipitate and are col-lec ted, and adding sulfuric acid regenerates the acid while forming gypsum (calcium sulfate) that constitutes a disposal problem. An early process for recovering the antibiotic cycloserine added silver nitrate to the fermentation broth to precipitate an insoluble silver salt. This process was soon obsolete because of poor economics and because the silver salt, when diy, exploded easily. [Pg.2143]

The formation of sulfuric acid cannot be economically retarded in the combustion process. The best method of eliminating sulfuric acid as a combustion product is to remove sulfur from the incoming fuel gas. Two separate sweetening processes are used to remove all sulfur from the fuel gas that will be burned. [Pg.375]

Implementation of cleaner production processes and pollution prevention measures can yield both economic and environmental benefits. The following production-related targets can be achieved by measures such as those described above. The numbers relate to the production processes before the addition of pollution control measures. In sulfuric acid plants that use the double-contact, double absorption process, emissions levels of 2 to 4 kilograms of sulfur dioxide... [Pg.69]

It is most economical when high-grade ores are used, becoming less economical with poorer feed materials containing iron, because of the production of chloride wastes from which the chlorine cannot be recovered. By contrast the sulfate process cannot make use of rutile which does not dissolve in sulfuric acid, but is able to operate on lower grade ores. However, the capital cost of plant for the sulfate process is higher, and disposal of waste has proved environmentally more difficult, so that most new plant is designed for the chloride process. [Pg.959]


See other pages where Sulfuric acid production economics is mentioned: [Pg.271]    [Pg.34]    [Pg.133]    [Pg.1161]    [Pg.459]    [Pg.502]    [Pg.294]    [Pg.508]    [Pg.38]    [Pg.45]    [Pg.323]    [Pg.21]    [Pg.145]    [Pg.183]    [Pg.184]    [Pg.188]    [Pg.1311]    [Pg.2127]    [Pg.41]    [Pg.652]    [Pg.562]    [Pg.547]   
See also in sourсe #XX -- [ Pg.301 , Pg.303 , Pg.308 , Pg.309 ]




SEARCH



Economics production

Sulfur economics

Sulfur production

Sulfur products

Sulfuric Acid Product

Sulfuric acid production

© 2024 chempedia.info