Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur economics

The availability of a reducing gas (or light hydrocarbons for its production) could make the recovery processes that produce elemental sulfur economically attractive. The impacts of utilizing this gas on the overall plant energy balance should be considered in the economic evaluation. [Pg.36]

Something has been lost in the new sulfur world. Who killed the sulfur entrepreneur This question is actually a warning to the oil and gas industry. A Sicilian-type complacency has taken over. The modem industry seeks, no demands, status quo. Such corporate indifference to sulfur is a threat to their core industry. What will the industry do when environmental regulation forces the release of huge volmnes of sulfur stockpiled at the oil sands of Northern Alberta Will an entrepreneur short-circuit this process and find a way of bringing the sulfur economically into the global marketplace The sulfur world, especially recovered sulfur, has not seen much entrepreneurial spirit for the past few decades. Such dormant times are only a transition before a new generation of entrepreneurs sweep into this industry. Who will be the 2D century Frasch to introduce a new renaissance in the sulfur world ... [Pg.208]

Economics. In contrast to NSP, the high nutrient content of TSP makes shipment of the finished product preferable to shipping of the raw materials. Plants, therefore, are located at or near the rock source. The phosphoric acid used, and the sulfuric acid required for its manufacture, usually are produced at the site of the TSP plant. As in the case of NSP, the cost of raw materials accounts for more than 90% of the total cost. Most of this is the cost of acid. [Pg.227]

The precipitated cellulose acetate is filtered from the dilute (25—36%) acetic acid. The acetic acid and salts remaining from the sulfuric acid neutrali2ation are removed by washing. The wet polymer is typically dried to a moisture content of 1—5%. The dilute acetic acid obtained from the washing and precipitation steps caimot be used in other stages of the process. Its efficient recovery and recycle are an economic necessity. [Pg.296]

Environmental considerations also were reflected in coal production and consumption statistics, including regional production patterns and economic sector utilization characteristics. Average coal sulfur content, as produced, declined from 2.3% in 1973 to 1.6% in 1980 and 1.3% in 1990. Coal ash content declined similarly, from 13.1% in 1973 to 11.1% in 1980 and 9.9% in 1990. These numbers clearly reflect a trend toward utilization of coal that produces less SO2 and less flyash to capture. Emissions from coal in the 1990s were 14 x 10 t /yr of SO2 and 450 x 10 t /yr of particulates generated by coal combustion at electric utiUties. The total coal combustion emissions from all sources were only slightly higher than the emissions from electric utiUty coal utilization (6). [Pg.4]

The process options reflect the broad range of compositions and gas volumes that must be processed. Both batch processes and continuous processes are used. Batch processes are used when the daily production of sulfur is small and of the order of 10 kg. When the daily sulfur production is higher, of the order of 45 kg, continuous processes are usually more economical. Using batch processes, regeneration of the absorbant or adsorbant is carried out in the primary reactor. Using continuous processes, absorption of the acid gases occurs in one vessel and acid gas recovery and solvent regeneration occur in a separate reactor. [Pg.172]

Several types of fluids are used as refrigerants in mechanical compression systems ammonia, halocarbon compounds, hydrocarbons, carbon dioxide, sulfur dioxide, and cryogenic fluids. A wide temperature range therefore is afforded. These fluids boil and condense isotherm ally. The optimum temperature or pressure at which each can be used can be deterrnined from the economics of the system. The optimum refrigerant can be deterrnined only... [Pg.508]

If the hydrogen could be reduced, the coproduction of hydrogen and valuable side products, eg, sulfur, sulfuric acid, and calcium sulfate, from H2S could become economically competitive. [Pg.427]

After sulfuric acid work-up (accompanied by the formation of sodium sulfate), the resorcinol is extracted and isolated in a 94% yield based on y -benzenedisulfonic acid [98-48-6]. In addition to the technical complexity that goes along with the manipulation of soHds at high temperature, this process produces large amounts of salts (sulfite and sulfate salts) which economically as well as environmentally are not always desired. [Pg.487]

Because of its low sulfur content, lignite is becoming mote important. The U.S. Clean Air Act Amendments of 1990 have resulted in economic premiums fotlow sulfur coal corresponding to 10/t for emission allowances at 500/t of SO2 (32). [Pg.155]

The development of selective extractants for copper has made extraction from dilute solutions (1—5 kg/m ) economically feasible. Transfer of the copper by stripping to a more concentrated sulfuric acid solution, ie, 30—40 kg/m for Cu " and 150—170 kg/m for H2SO4, from which the copper is recovered by electrowinning. The simplified reaction,... [Pg.172]

MAA and MMA may also be prepared via the ammoxidation of isobutylene to give meth acrylonitrile as the key intermediate. A mixture of isobutjiene, ammonia, and air are passed over a complex mixed metal oxide catalyst at elevated temperatures to give a 70—80% yield of methacrylonitrile. Suitable catalysts often include mixtures of molybdenum, bismuth, iron, and antimony, in addition to a noble metal (131—133). The meth acrylonitrile formed may then be hydrolyzed to methacrjiamide by treatment with one equivalent of sulfuric acid. The methacrjiamide can be esterified to MMA or hydrolyzed to MAA under conditions similar to those employed in the ACH process. The relatively modest yields obtainable in the ammoxidation reaction and the generation of a considerable acid waste stream combine to make this process economically less desirable than the ACH or C-4 oxidation to methacrolein processes. [Pg.253]

Sulfur Compounds. Various gas streams are treated by molecular sieves to remove sulfur contaminants. In the desulfurization of wellhead natural gas, the unit is designed to remove sulfur compounds selectively, but not carbon dioxide, which would occur in Hquid scmbbing processes. Molecular sieve treatment offers advantages over Hquid scmbbing processes in reduced equipment size because the acid gas load is smaller in production economics because there is no gas shrinkage (leaving CO2 in the residue gas) and in the fact that the gas is also fliUy dehydrated, alleviating the need for downstream dehydration. [Pg.456]

The aqueous sodium naphthenate phase is decanted from the hydrocarbon phase and treated with acid to regenerate the cmde naphthenic acids. Sulfuric acid is used almost exclusively, for economic reasons. The wet cmde naphthenic acid phase separates and is decanted from the sodium sulfate brine. The volume of sodium sulfate brine produced from dilute sodium naphthenate solutions is significant, on the order of 10 L per L of cmde naphthenic acid. The brine contains some phenolic compounds and must be treated or disposed of in an environmentally sound manner. Sodium phenolates can be selectively neutralized using carbon dioxide and recovered before the sodium naphthenate is finally acidified with mineral acid (29). Recovery of naphthenic acid from aqueous sodium naphthenate solutions using ion-exchange resins has also been reported (30). [Pg.511]

Gas purification processes fall into three categories the removal of gaseous impurities, the removal of particulate impurities, and ultrafine cleaning. The extra expense of the last process is only justified by the nature of the subsequent operations or the need to produce a pure gas stream. Because there are many variables in gas treating, several factors must be considered (/) the types and concentrations of contaminants in the gas (2) the degree of contaminant removal desired (J) the selectivity of acid gas removal required (4) the temperature, pressure, volume, and composition of the gas to be processed (5) the carbon dioxide-to-hydrogen sulfide ratio in the gas and (6) the desirabiUty of sulfur recovery on account of process economics or environmental issues. [Pg.209]

Benzene SuIfona.tion. In the benzene sulfonation process, benzene reacts with concentrated sulfuric acid to form benzenesulfonic acid at about 150°C. The benzenesulfonic acid is neutralized with sodium sulfate to produce sodium benzenesulfonate, which is then fused with caustic soda to yield sodium phenate. The sodium phenate is acidified with sulfur dioxide and a small amount of sulfuric acid to release the phenol from the sodium salt. The phenol yield by this process can be as high as 88 mol % to that of the theoretical value based on benzene. Plants employing this technology have been shut down for environmental and economic reasons. [Pg.289]

An additional mole of ammonium sulfate per mole of final lactam is generated duting the manufacture of hydroxylamine sulfate [10039-54-0] via the Raschig process, which converts ammonia, air, water, carbon dioxide, and sulfur dioxide to the hydroxylamine salt. Thus, a minimum of two moles of ammonium sulfate is produced per mole of lactam, but commercial processes can approach twice that amount. The DSM/Stamicarbon HPO process, which uses hydroxylamine phosphate [19098-16-9] ia a recycled phosphate buffer, can reduce the amount to less than two moles per mole of lactam. Ammonium sulfate is sold as a fertilizer. However, because H2SO4 is released and acidifies the soil as the salt decomposes, it is alow grade fertilizer, and contributes only marginally to the economics of the process (145,146) (see Caprolactam). [Pg.234]

The choice of catalyst is based primarily on economic effects and product purity requirements. More recentiy, the handling of waste associated with the choice of catalyst has become an important factor in the economic evaluation. Catalysts that produce less waste and more easily handled waste by-products are strongly preferred by alkylphenol producers. Some commonly used catalysts are sulfuric acid, boron trifluoride, aluminum phenoxide, methanesulfonic acid, toluene—xylene sulfonic acid, cationic-exchange resin, acidic clays, and modified zeoHtes. [Pg.62]

In the United States, aluminum sulfate is usually produced by the reaction of bauxite or clay (qv) with sulfuric acid (see Sulfuric acid and sulfur trioxide). Bauxite is imported and more expensive than local clay, generally kaolin, which is more often used. Clay is first roasted to remove organics and break down the crystalline stmcture in order to make it more reactive. This is an energy intensive process. The purity of the starting clay or bauxite ore, especially the iron and potassium contents, are reflected in the assay of the final product. Thus the selection of the raw material is governed by the overall economics of producing a satisfying product. [Pg.176]

Electrolytic reductions generally caimot compete economically with chemical reductions of nitro compounds to amines, but they have been appHed in some specific reactions, such as the preparation of aminophenols (qv) from aromatic nitro compounds. For example, in the presence of sulfuric acid, cathodic reduction of aromatic nitro compounds with a free para-position leads to -aminophenol [123-30-8] hy rearrangement of the intermediate N-phenyl-hydroxylamine [100-65-2] (61). [Pg.263]

Some companies have used the Merseburg process to manufacture ammonium sulfate from gypsum, but the process is only economically attractive where sulfur is unavailable or very expensive (32), and is thus not used in the United States. Ammonium carbonate, formed by the reaction of ammonia and carbon dioxide in an aqueous medium, reacts with suspended, finely ground gypsum. Insoluble calcium carbonate and an ammonium sulfate solution are formed. [Pg.368]

Economic Aspects and Uses. Almost all ammonium sulfate is used as a fertilizer for this purpose it is valued both for its nitrogen content and for its readily available sulfur content. In 1986/1987 United States consumption of ammonium sulfate was 0.57 million metric tons (34) world consumption during the same period was estimated at 13.3 million metric tons. In North America ammonium sulfate is largely recovered from caprolactam production. [Pg.368]

Economic Aspects and Uses. Production and pricing information for Na2S through 1991 are Hsted in Table 2. U.S. production of sodium sulfide increased rapidly from 1965 through 1972 and then began to decrease. The last year that the U.S. Bureau of the Census released official production figures was in 1974 because at that time there were only three producers of sodium sulfide. Estimates indicate that 1991 production fell to the levels of the late 1950s. List prices have increased since 1974 as sulfur and sodium hydroxide prices have increased. [Pg.210]

Miscellaneous Sulfur Chemicals—United States, Chemical Economics Handbook, 780.4000M-X, Stanford Research Institute International, Menlo Park, Calif., May 1992. [Pg.211]


See other pages where Sulfur economics is mentioned: [Pg.414]    [Pg.414]    [Pg.102]    [Pg.502]    [Pg.221]    [Pg.234]    [Pg.294]    [Pg.508]    [Pg.172]    [Pg.379]    [Pg.552]    [Pg.149]    [Pg.2]    [Pg.38]    [Pg.45]    [Pg.354]    [Pg.356]    [Pg.141]    [Pg.161]    [Pg.323]    [Pg.421]    [Pg.90]    [Pg.111]    [Pg.562]    [Pg.219]    [Pg.224]    [Pg.539]    [Pg.484]   
See also in sourсe #XX -- [ Pg.206 ]




SEARCH



Sulfur economic advantages

Sulfur economic importance

Sulfuric acid production economics

Sulfuric economic importance

© 2024 chempedia.info