Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Circulation rate

The primary control variables at a fixed feed rate, as in the operation pictured in Figure 8, are the cycle time, which is measured by the time required for one complete rotation of the rotary valve (this rotation is the analog of adsorbent circulation rate in an actual moving-bed system), and the Hquid flow rate in Zones 2, 3, and 4. When these control variables are specified, all other net rates to and from the bed and the sequence of rates required at the Hquid... [Pg.296]

Primary alkanolamine solutions require a relatively high heat of regeneration. Also excessive temperatures or localized overheating in reboilers cause the MEA to decompose and form corrosive compounds. An inhibitor system, such as the Amine Guard system developed by Union Carbide, is an effective method of corrosion control (52). Inhibitors permit the use of higher (25—35%) concentration MEA solutions, thus allowing lower circulation rates and subsequendy lower regeneration duty. [Pg.349]

Gas leaving the economizer flows to a packed tower where SO is absorbed. Most plants do not produce oleum and need only one tower. Concentrated sulfuric acid circulates in the tower and cools the gas to about the acid inlet temperature. The typical acid inlet temperature for 98.5% sulfuric acid absorption towers is 70—80°C. The 98.5% sulfuric acid exits the absorption tower at 100—125°C, depending on acid circulation rate. Acid temperature rise within the tower comes from the heat of hydration of sulfur trioxide and sensible heat of the process gas. The hot product acid leaving the tower is cooled in heat exchangers before being recirculated or pumped into storage tanks. [Pg.185]

Carbon. Most of the Earth s supply of carbon is stored in carbonate rocks in the Hthosphere. Normally the circulation rate for Hthospheric carbon is slow compared with that of carbon between the atmosphere and biosphere. The carbon cycle has received much attention in recent years as a result of research into the possible relation between increased atmospheric carbon dioxide concentration, most of which is produced by combustion of fossil fuel, and the "greenhouse effect," or global warming. Extensive research has been done on the rate at which carbon dioxide might be converted to cellulose and other photosyntheticaHy produced organic compounds by various forms of natural and cultivated plants. Estimates also have been made of the rate at which carbon dioxide is released to soil under optimum conditions by various kinds of plant cover, such as temperature-zone deciduous forests, cultivated farm crops, prairie grassland, and desert vegetation. [Pg.200]

Thus the ECCU always operates in complete heat balance at any desired hydrocarbon feed rate and reactor temperature this heat balance is achieved in units such as the one shown in Eigure 1 by varying the catalyst circulation rate. Catalyst flow is controlled by a sHde valve located in the catalyst transfer line from the regenerator to the reactor and in the catalyst return line from the reactor to the regenerator. In some older style units of the Exxon Model IV-type, where catalyst flow is controlled by pressure balance between the reactor and regenerator, the heat-balance control is more often achieved by changing the temperature of the hydrocarbon feed entering the riser. [Pg.208]

Coke on the catalyst is often referred to as delta coke (AC), the coke content of the spent catalyst minus the coke content of the regenerated catalyst. Delta coke directly influences the regenerator temperature and controls the catalyst circulation rate in the FCCU, thereby controlling the ratio of catalyst hydrocarbon feed (cat-to-od ratio, or C/O). The coke yield as a fraction of feed Cpis related to delta coke through the C/O ratio as ... [Pg.209]

Decreasing the specific heat of combustion increases the amount of the coke that must be burned the coke component that increases is essentially the cat-to-od coke, which is increased by increasing the catalyst circulation rate. Cat-to-oil coke can be expressed as (20) ... [Pg.211]

Thus decreasing the specific heat of combustion results in an increase in catalyst circulation rate. Because of this relationship to coke yield (eq. 9), the increase in the catalyst circulation rate results in a decrease in regenerator temperature. [Pg.211]

The principal advance ia technology for SASOL I relative to the German Fischer-Tropsch plants was the development of a fluidized-bed reactor/regenerator system designed by M. W. Kellogg for the synthesis reaction. The reactor consists of an entrained-flow reactor ia series with a fluidized-bed regenerator (Fig. 14). Each fluidized-bed reactor processes 80,000 m /h of feed at a temperature of 320 to 330°C and 2.2 MPa (22 atm), and produces approximately 300 m (2000 barrels) per day of Hquid hydrocarbon product with a catalyst circulation rate of over 6000 t/h (49). [Pg.291]

Current densities and cell voltages have been increased in some refineries, but the majority of refineries are still operating at 175—230 A/m, copper concentrations of 30—50 g/L, electrolyte temperatures of 55—65°C, and circulation rates of 10—20 L/min to obtain good-quafity cathodes. [Pg.202]

Correlations of nucleation rates with crystallizer variables have been developed for a variety of systems. Although the correlations are empirical, a mechanistic hypothesis regarding nucleation can be helpful in selecting operating variables for inclusion in the model. Two examples are (/) the effect of slurry circulation rate on nucleation has been used to develop a correlation for nucleation rate based on the tip speed of the impeller (16) and (2) the scaleup of nucleation kinetics for sodium chloride crystalliza tion provided an analysis of the role of mixing and mixer characteristics in contact nucleation (17). Pubhshed kinetic correlations have been reviewed through about 1979 (18). In a later section on population balances, simple power-law expressions are used to correlate nucleation rate data and describe the effect of nucleation on crystal size distribution. [Pg.343]

The preceding two equations may be used to write the gradient equation for the countercurrent gas centrifuge in an alternative form. If the ratio of the actual gas circulation rate in the centrifuge to the circulation rate that rninimizes the stage length T/Tq is designated by m, then equation 74 may be rewritten... [Pg.93]

No detailed tests have been reported for the performance of propeller calandrias. Not enough is known regarding the performance of the propellers themselves under the cavitating conditions usually encountered to permit predicting circulation rates. In many cases, it appears that the propeller does no good in accelerating heat transfer over the transfer Tor natural circffiation (Fig. 11-23). [Pg.1045]

In a submerged-tube FC evaporator, all heat is imparted as sensible heat, resulting in a temperature rise of the circulating hquor that reduces the overall temperature difference available for heat transfer. Temperature rise, tube proportions, tube velocity, and head requirements on the circulating pump all influence the selec tion of circulation rate. Head requirements are frequently difficult to estimate since they consist not only of the usual friction, entrance and contraction, and elevation losses when the return to the flash chamber is above the liquid level but also of increased friction losses due to flashing in the return line and vortex losses in the flash chamber. Circulation is sometimes limited by vapor in the pump suction hne. This may be drawn in as a result of inadequate vapor-liquid separation or may come from vortices near the pump suction connection to the body or may be formed in the line itself by short circuiting from heater outlet to pump inlet of liquor that has not flashed completely to equilibrium at the pressure in the vapor head. [Pg.1139]

The rate at which each fan circulates air can be varied by changing the pitch of the fan blades. In final drying stages, in which diffusion controls or the product is light and powdery, the circulation rate is considerably lower than in the initial stage, in which high evaporation rates prevail. In the majority of applications, air flows through the... [Pg.1215]

The actual liquid-to-gas ratio (solvent-circulation rate) normally will be greater than the minimum by as much as 25 to 100 percent and may be arrived at by economic considerations as well as by judgment and experience. For example, in some packed-tower applications involving veiy soluble gases or vacuum operation, the minimum quantity of solvent needed to dissolve the solute may be insufficient to keep the packing surface thoroughly wet, leading to poor distribution of the liquid stream. [Pg.1351]

Pitched-blade turbines (Fig, 18-3) are used on top-entering agitator shafts instead of propellers when a high axial circulation rate is desired and the power consumption is more than 2,2 kW (3 hp), A pitched-blade turbine near the upper surface of liquid in a essel is effecth e for rapid submergence of floating particulate solids,... [Pg.1627]


See other pages where Circulation rate is mentioned: [Pg.295]    [Pg.335]    [Pg.502]    [Pg.12]    [Pg.5]    [Pg.212]    [Pg.200]    [Pg.22]    [Pg.58]    [Pg.209]    [Pg.211]    [Pg.211]    [Pg.213]    [Pg.222]    [Pg.387]    [Pg.350]    [Pg.356]    [Pg.357]    [Pg.93]    [Pg.93]    [Pg.93]    [Pg.94]    [Pg.94]    [Pg.473]    [Pg.477]    [Pg.1043]    [Pg.1043]    [Pg.1114]    [Pg.1139]    [Pg.1486]    [Pg.1566]    [Pg.1569]    [Pg.1627]    [Pg.1628]   
See also in sourсe #XX -- [ Pg.146 ]

See also in sourсe #XX -- [ Pg.13 ]

See also in sourсe #XX -- [ Pg.17 ]

See also in sourсe #XX -- [ Pg.17 ]

See also in sourсe #XX -- [ Pg.552 ]




SEARCH



Agitated vessels circulation rate

Agitation circulation rate

Amine Circulation Rates

Anime circulation rates

Circulation flow system, measurement reaction rate

Circulation rate solvent

Circulation time, shear rates

Minimum solids circulation rate

Mixing circulation time, shear rates

Solid circulation rate

Water purification circulation rates

© 2024 chempedia.info