Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfides pollutant removal

Most of the pollutants may be effectively removed by precipitation of metal hydroxides or carbonates using a reaction with lime, sodium hydroxide, or sodium carbonate. For some, improved removals are provided by the use of sodium sulfide or ferrous sulfide to precipitate the pollutants as sulfide compounds with very low solubilities. After soluble metals are precipitated as insoluble floes, one of the water-solid separators (such as dissolved air flotation, sedimentation, centrifugation, membrane filtration, and so on) can be used for floes removal.911 The effectiveness of pollutant removal by several different precipitation methods is summarized in Tables 5.15-5.17. [Pg.220]

Reduction of metal oxides with hydrogen is of interest in the metals refining industry (94,95) (see Metallurgy). Hydrogen is also used to reduce sulfites to sulfides in one step in the removal of SO2 pollutants (see Airpollution) (96). Hydrogen reacts directiy with SO2 under catalytic conditions to produce elemental sulfur and H2S (97—98). Under certain conditions, hydrogen reacts with nitric oxide, an atmospheric poUutant and contributor to photochemical smog, to produce N2 ... [Pg.416]

The toxic nature of mercury and its compounds has caused concern over environmental pollution, and governmental agencies have imposed severe restrictions on release of mercury compounds to waterways and the air (see Mercury). Methods of precipitation and agglomeration of mercurial wastes from process water have been developed. These methods generally depend on the formation of relatively insoluble compounds such as mercury sulfides, oxides, and thiocarbamates. MetaUic mercury is invariably formed as a by-product. The use of coprecipitants, which adsorb mercury on their surfaces facihtating removal, is frequent. [Pg.112]

Although the continuous-countercurrent type of operation has found limited application in the removal of gaseous pollutants from process streams (Tor example, the removal of carbon dioxide and sulfur compounds such as hydrogen sulfide and carbonyl sulfide), by far the most common type of operation presently in use is the fixed-bed adsorber. The relatively high cost of continuously transporting solid particles as required in steady-state operations makes fixed-bed adsorption an attractive, economical alternative. If intermittent or batch operation is practical, a simple one-bed system, cycling alternately between the adsorption and regeneration phases, 1 suffice. [Pg.2187]

The technology is primarily applicable to the removal of inorganic fumes, vapors, and gases (e.g., chromic acid, hydrogen sulfide, ammonia, chlorides, fluorides, and SOj) volatile organic compounds (VOC) and particulate matter (PM), including PM less than or equal to 10 micrometers ( m) in aerodynamic diameter (PM,q), PM less than or equal to 2.5 m in aerodynamic diameter (PMj 5), and hazardous air pollutants (HAP) in particulate form (PM ap)-... [Pg.447]

MS As are recirculated. The stripped acid gases are fed to a Claus unit" where elemental sulfur is recovered from hydrogen sulfide. In view of air pollution control regulations, the tail gases leaving the Claus unit, R, should be treated for partial removal of the unconverted hydrogen sulfide. Table 3.10 summarizes the stream data. [Pg.76]

The most efficient processes in Table I are for steel and alumintim, mainly because these metals are produced in large amounts, and much technological development has been lavished on them. Magnesium and titanium require chloride intermediates, decreasing their efficiencies of production lead, copper, and nickel require extra processing to remove unwanted impurities. Sulfide ores produce sulfur dioxide (SO2), a pollutant, which must be removed from smokestack gases. For example, in copper production the removal of SO, and its conversion to sulfuric acid adds up to 8(10) JA g of additional process energy consumption. In aluminum production disposal of waste ciyolite must be controlled because of possible fiuoride contamination. [Pg.772]

Removal of Pollutants by Sulfide Precipitation at Three Plants... [Pg.220]

Toxic pollutants found in the mercury cell wastewater stream include mercury and some heavy metals like chromium and others stated in Table 22.8, some of them are corrosion products of reactions between chlorine and the plant materials of construction. Virtually, most of these pollutants are generally removed by sulfide precipitation followed by settling or filtration. Prior to treatment, sodium hydrosulfide is used to precipitate mercury sulfide, which is removed through filtration process in the wastewater stream. The tail gas scrubber water is often recycled as brine make-up water. Reduction, adsorption on activated carbon, ion exchange, and some chemical treatments are some of the processes employed in the treatment of wastewater in this cell. Sodium salts such as sodium bisulfite, sodium hydrosulfite, sodium sulfide, and sodium borohydride are also employed in the treatment of the wastewater in this cell28 (Figure 22.5). [Pg.926]

Hexavalent chromium and metals such as zinc and nickel that are present as impurities in the chromites ore are predominant pollutants associated with the sodium dichromate plant. They are generally removed through alkaline precipitation, clarification, filtration, and settling processes. The wastewater is treated with sodium sulfide to reduce hexavalent chromium to trivalent chromium,... [Pg.941]

Common pollutants in a titanium dioxide plant include heavy metals, titanium dioxide, sulfur trioxide, sulfur dioxide, sodium sulfate, sulfuric acid, and unreacted iron. Most of the metals are removed by alkaline precipitation as metallic hydroxides, carbonates, and sulfides. The resulting solution is subjected to flotation, settling, filtration, and centrifugation to treat the wastewater to acceptable standards. In the sulfate process, the wastewater is sent to the treatment pond, where most of the heavy metals are precipitated. The precipitate is washed and filtered to produce pure gypsum crystals. All other streams of wastewater are treated in similar ponds with calcium sulfate before being neutralized with calcium carbonate in a reactor. The effluent from the reactor is sent to clarifiers and the solid in the underflow is filtered and concentrated. The clarifier overflow is mixed with other process wastewaters and is then neutralized before discharge. [Pg.949]

Petroleum refining also produces substantial amounts of carbon dioxide, which with hydrogen sulfide, corrode refining equipment, harm catalysts, pollute the atmosphere, and prevent the use of hydrocarbon components in petrochemical manufacture. When the amount of hydrogen sulfide is high, it may be removed from a gas stream and converted to sulfur or sulfuric acid. Some natural gases contain sufficient carbon dioxide to warrant recovery as dry ice. [Pg.243]

Polymerization is a rather dirty process in terms of pounds of pollutants per barrel of charge, but because of the small polymerization capacity in most refineries, the total waste production from the process is small. Even though the process makes use of acid catalysts, the waste stream is alkaline because the acid catalyst in most subprocesses is recycled, and any remaining acid is removed by caustic washing. Most of the waste material comes from the pretreatment of feedstock, which removes sulfides, mercaptans, and ammonia from the feedstock in caustic and acid wastes. [Pg.246]

Reforming is a relatively clean process. The volume of wastewater flow is small, and none of the wastewater streams has high concentrations of significant pollutants. The wastewater is alkaline, and the major pollutant is sulfide from the overhead accumulator on the stripping tower used to remove light hydrocarbon fractions from the reactor effluent. The overhead accumulator catches any water that may be contained in the hydrocarbon vapors. In addition to sulfides, the wastewater contains small amounts of ammonia, mercaptans, and oil. [Pg.248]

At least three pesticide plants use priority pollutant metals separation systems in the United States [7]. One plant uses hydrogen sulfide precipitation to remove copper from its pesticide wastewater. The operating system consists of an agitated precipitator to which the H2S is added, a soak vessel to which sulfur dioxide is added, a neutralization step using ammonia, and a gravity separation and centrifuging process. Copper is removed from an influent level of 4500 mg/L to 2.2 mg/L. [Pg.533]

This is a process mainly used in power plants for removal of ions by forming insoluble salts. Common precipitating agents are lime, hydrogen sulfide, organic precipitants, and sods ash. Optimum pH depends on the ions to be removed. The removal efficiency for inorganic pollutants is as follows ... [Pg.611]


See other pages where Sulfides pollutant removal is mentioned: [Pg.18]    [Pg.18]    [Pg.118]    [Pg.18]    [Pg.18]    [Pg.18]    [Pg.18]    [Pg.362]    [Pg.791]    [Pg.412]    [Pg.353]    [Pg.283]    [Pg.209]    [Pg.209]    [Pg.122]    [Pg.530]    [Pg.2228]    [Pg.455]    [Pg.252]    [Pg.123]    [Pg.263]    [Pg.94]    [Pg.67]    [Pg.767]    [Pg.926]    [Pg.934]    [Pg.941]    [Pg.945]    [Pg.52]    [Pg.223]    [Pg.231]    [Pg.21]    [Pg.453]    [Pg.265]   
See also in sourсe #XX -- [ Pg.119 ]




SEARCH



Atmospheric pollution hydrogen sulfide removal

Pollutants removing

Sulfide removal

© 2024 chempedia.info