Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen unconverted

Although the selectivity of isopropyl alcohol to acetone via vapor-phase dehydrogenation is high, there are a number of by-products that must be removed from the acetone. The hot reactor effluent contains acetone, unconverted isopropyl alcohol, and hydrogen, and may also contain propylene, polypropylene, mesityl oxide, diisopropyl ether, acetaldehyde, propionaldehyde, and many other hydrocarbons and carbon oxides (25,28). [Pg.96]

Conversion of carbon in the coal to gas is very high. With low rank coal, such as lignite and subbituminous coal, conversion may border on 100%, and for highly volatile A coals, it is on the order of 90—95%. Unconverted carbon appears mainly in the overhead material. Sulfur removal is faciUtated in the process because typically 90% of it appears in the gas as hydrogen sulfide, H2S, and 10% as carbonyl sulfide, COS carbon disulfide, CS2, and/or methyl thiol, CH SH, are not usually formed. [Pg.69]

The reactor effluent is separated by conventional distillation into recycle solvent, light gases, to 537°C bp distillate, and a heavy vacuum bottoms stream containing unconverted coal and ash. The recycle solvent is hydrogenated in a separate reactor and sent back to the Hquefaction reactor. [Pg.91]

By-products from EDC pyrolysis typically include acetjiene, ethylene, methyl chloride, ethyl chloride, 1,3-butadiene, vinylacetylene, benzene, chloroprene, vinyUdene chloride, 1,1-dichloroethane, chloroform, carbon tetrachloride, 1,1,1-trichloroethane [71-55-6] and other chlorinated hydrocarbons (78). Most of these impurities remain with the unconverted EDC, and are subsequendy removed in EDC purification as light and heavy ends. The lightest compounds, ethylene and acetylene, are taken off with the HCl and end up in the oxychlorination reactor feed. The acetylene can be selectively hydrogenated to ethylene. The compounds that have boiling points near that of vinyl chloride, ie, methyl chloride and 1,3-butadiene, will codistiU with the vinyl chloride product. Chlorine or carbon tetrachloride addition to the pyrolysis reactor feed has been used to suppress methyl chloride formation, whereas 1,3-butadiene, which interferes with PVC polymerization, can be removed by treatment with chlorine or HCl, or by selective hydrogenation. [Pg.419]

MS As are recirculated. The stripped acid gases are fed to a Claus unit" where elemental sulfur is recovered from hydrogen sulfide. In view of air pollution control regulations, the tail gases leaving the Claus unit, R, should be treated for partial removal of the unconverted hydrogen sulfide. Table 3.10 summarizes the stream data. [Pg.76]

The Van t Hoff box for this process will produce five components—carbon dioxide, carbon monoxide, water vapour and hydrogen, and unconverted methane. Again if... [Pg.143]

In the second section, unconverted hydrogen sulfide reacts with the produced sulfur dioxide over a bauxite catalyst in the Claus reactor. Normally more than one reactor is available. In the Super-Claus process (Figure 4-3), three reactors are used. The last reactor contains a selective oxidation catalyst of high efficiency. The reaction is slightly exothermic ... [Pg.116]

The process consists of a reactor section, continuous catalyst regeneration unit (CCR), and product recovery section. Stacked radial-flow reactors are used to minimize pressure drop and to facilitate catalyst recirculation to and from the CCR. The reactor feed consists solely of LPG plus the recycle of unconverted feed components no hydrogen is recycled. The liquid product contains about 92 wt% benzene, toluene, and xylenes (BTX) (Figure 6-7), with a balance of Cg aromatics and a low nonaromatic content. Therefore, the product could be used directly for the recovery of benzene by fractional distillation (without the extraction step needed in catalytic reforming). [Pg.178]

The SASOL plant was operated with a surplus of C02 during a long term test of 4000 hrs. Of the C02 in the synthesis gas, 33.4% was metha-nated while the remaining 66.6% left the reaction system unconverted. Product gas from final methanation yielded specification grade SNG containing residual hydrogen of 0.7 vol % and residual CO of less than 0.1 vol %. The heating value was 973 Btu/standard cubic foot (scf) after C02 removal to 0.5 vol % (calc.). [Pg.127]

The LAB production process (process 1) is mainly developed and licensed by UOP. The N-paraffins are partially converted to internal /z-olefins by a catalytic dehydrogenation. The resulting mixture of /z-paraffins and n-olefins is selectively hydrogenated to reduce diolefins and then fed into an alkylation reactor, together with an excess benzene and with concentrated hydrofluoric acid (HF) which acts as the catalyst in a Friedel-Crafts reaction. In successive sections of the plant the HF, benzene, and unconverted /z-paraffins are recovered and recycled to the previous reaction stages. In the final stage of distillation, the LAB is separated from the heavy alkylates. [Pg.671]

FIGURE 14.17 A diaphragm cell tor the electrolytic production of sodium hydroxide from brine (aqueous sodium chloride solution), represented by the blue color. The diaphragm (gold color) prevents the chlorine produced at the titanium anodes from mixing with the hydrogen and the sodium hydroxide formed at the steel cathodes. The liquid (cell liquor) is drawn off and the water is partly evaporated. The unconverted sodium chloride crystallizes, leaving the sodium hydroxide dissolved in the cell liquor. [Pg.711]

In the feed pretreatment section oil and water are removed from the recovered or converted CCI2F2. The reactor type will be a multi-tubular fixed bed reactor because of the exothermic reaction (standard heat of reaction -150 kJ/mol). After the reactor the acids are selectively removed and collected as products of the reaction. In the light removal section the CFCs are condensed and the excess hydrogen is separated and recycled. The product CH2F2 is separated from the waste such as other CFCs produced and unconverted CCI2F2. The waste will be catalytically converted or incinerated. A preliminary process design has shown that such a CFC-destruction process would be both technically and economically feasible. [Pg.377]

Conversion levels should be limited so as to be compatible with the required hydrogen manufacture from unconverted coal. [Pg.141]

In the present estimation, a continuous dehydrogenation reactor in which decalin is supplied to the catalyst at various feed rates without internal refluxing is assumed. Here all the condensable products and unconverted decalin were removed from the reactor to the condensation part (see Figure 13.22). Now, the stationary rates of hydrogen generation (VH), naphthalene formation (VN), and evaporation of unconverted decalin (VD) are defined as the magnitudes per area of the catalyst layer (mol/m2h). All these rates are expressed from mass balance as follows . [Pg.460]

Because the thermal separation of products has been substituted by a liquid-liquid separation, the two phase technology should be best suited for hydroformylation of longer chain olefins. But with rising chain length of the olefins the solubility in the aqueous catalyst phase drops dramatically and as a consequence the reaction rate. Only the hydroformylation of 1-butene proceeds with bearable space-time yield. This is applied on a small scale for production of valeraldehyde starting from raffinate II. Because the sulfonated triphenylphosphane/rhodium catalyst exhibits only slow isomerization and virtually no hydroformylation of internal double bonds, only 1-butene is converted. The remaining raffinate III, with some unconverted 1-butene and the unconverted 2-butene, is used in a subsequent hydroformy-lation/hydrogenation for production of technical amylalcohol, a mixture of linear and branched C5-alcohols. [Pg.36]


See other pages where Hydrogen unconverted is mentioned: [Pg.111]    [Pg.74]    [Pg.180]    [Pg.176]    [Pg.111]    [Pg.74]    [Pg.180]    [Pg.176]    [Pg.216]    [Pg.22]    [Pg.408]    [Pg.491]    [Pg.160]    [Pg.341]    [Pg.125]    [Pg.537]    [Pg.201]    [Pg.509]    [Pg.2378]    [Pg.215]    [Pg.263]    [Pg.143]    [Pg.148]    [Pg.83]    [Pg.85]    [Pg.455]    [Pg.462]    [Pg.579]    [Pg.581]    [Pg.236]    [Pg.341]    [Pg.113]    [Pg.201]    [Pg.214]    [Pg.307]    [Pg.310]    [Pg.216]    [Pg.223]    [Pg.138]    [Pg.549]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



© 2024 chempedia.info