Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water scrubber

A fluid-bed incinerator uses hot sand as a heat reservoir for dewatering the sludge and combusting the organics. The turbulence created By the incoming air and the sand suspension requires the effluent gases to be treated in a wet scrubber prior to final discharge. The ash is removed from the scrubber water by a cyclone separator. The scrubber water is normally returned to the treatment process and diluted with the total plant effluent. The ash is normally buried. [Pg.2230]

Gases or vapours that are water soluble or miscible or that are only soluble or highly reactive in other agents Absorption with multiple surface contact by atomizing liquid with spray nozzle or jet impaction Crabtree ozone analyser or midget venturi scrubber Water, acid, or alkali 5-25 60-100 Venturi scrubber satisfactory if dust is present Atomizer absorber will plug... [Pg.320]

Scrubbers often convert an air pollution problem into a water pollution problem. If regulations require 100% recycling, the scrubber water may require flocculants or neutralizing chemicals or both. Corrosion can be a serious problem requiring high maintenance or special materials of construction. [Pg.1245]

Largest source gas cooling water and scrubber water for gas cleaning Typical water flows ... [Pg.47]

Fume scrubber water recycle. The steel finishing industry uses fume scrubbers to capture acid gases from pickling tanks. Scrubber water, which may contain a dilute caustic solution, is neutralized and recirculated continuously to adsorb the acid. Makeup water is added to replace water lost through evaporation and water that is blown down to end-of-pipe metals treatment. [Pg.66]

On April 8, 2003, U.S. EPA proposed to add benzene and 2-ethoxyethanol to the list of solvents whose mixtures with wastewater are exempted from the definition of hazardous waste.23 U.S. EPA is proposing to provide flexibility in the way compliance with the rule is determined by adding the option of directly measuring solvent chemical levels at the headworks of the wastewater treatment system. In addition, U.S. EPA is proposing to include scrubber waters derived from the combustion of spent solvents to the headworks exemption. Finally, U.S. EPA is finalizing the Headworks Rule, as follows24 ... [Pg.516]

This wastewater stream contains lead (Pb) salts and chlorinated hydrocarbons generated from corrosion of the anodes as well as asbestos particles generated as a result of degradation of the diaphragm with use. Wastewater is also generated from the scrubber where the chlorine is wet scrubbed and from the ion exchange resin used to purify the brine solution. These wash water often contains dilute hydrochloric acid with small amounts of dissolved calcium magnesium and aluminum chloride. Like in other cells, the scrubber water also contributes to the wastewater stream. [Pg.926]

Toxic pollutants found in the mercury cell wastewater stream include mercury and some heavy metals like chromium and others stated in Table 22.8, some of them are corrosion products of reactions between chlorine and the plant materials of construction. Virtually, most of these pollutants are generally removed by sulfide precipitation followed by settling or filtration. Prior to treatment, sodium hydrosulfide is used to precipitate mercury sulfide, which is removed through filtration process in the wastewater stream. The tail gas scrubber water is often recycled as brine make-up water. Reduction, adsorption on activated carbon, ion exchange, and some chemical treatments are some of the processes employed in the treatment of wastewater in this cell. Sodium salts such as sodium bisulfite, sodium hydrosulfite, sodium sulfide, and sodium borohydride are also employed in the treatment of the wastewater in this cell28 (Figure 22.5). [Pg.926]

Generally, water is used in this plant to cool, leach, filter wash, scrub, heat, and washdown. The unreacted ore is slurred and sent, along with chromium and other impurities originally present in the ore, to the treatment plant. The boiler blowdown, which is sometimes contaminated with chromium escaping from the process area, adds to the volume of wastewater coming from the plant. The non-contact cooling water from the plant contains dissolved sulfate, chloride, and chromate thus it is sent to a wastewater treatment plant. The scrubber water may be used to slurry the ore or discharged. [Pg.941]

Scrubber water is onoculated with activated sludge, i.e. special micro-organisms ... [Pg.265]

General Electric Company, under an EPA permit, incinerated nearly 6,000 L (1,500 gal.) of 20% liquid DDT formulations in a liquid injection incinerator near Pittsfield, Massachusetts, in September 1974 (4). The facility utilized a vortex combustor of the type normally used for disposal of oils and solvents. Operating temperatures ranged from 870 to 980°C with retention times of 3 to 4 s and 120 to 160% excess air. Overall destruction efficiency exceeded 99.99%. Concentrations of DDT, DDE, and DDD in the stack gas and scrubber water were below analytical detection limits. [Pg.182]

In 1974 Midwest Research Institute operated a pilot-scale multiple chamber incinerator to evaluate for EPA the operational variables for pesticide incineration (8). The system included a. pilot-scale incinerator, a three-stage scrubber system, and a scrubber water treatment system. Nine pesticides (aldrin, atrazine, captan, DDT, malathion, mirex, picloram, toxaphene, and zineb) in 15 liquid and solid formulations were studied. Destruction efficiencies generally exceeded 99.99% over a range of temperatures and retention times ( 950 to 1100°C, 1.2 to 6 s, and 80 to 160% excess air). This study also documented the generation of measurable quantities of cyanide in the incinerator off-gas during the incineration of organonitrogen pesticides. [Pg.184]

Reuse of wastewater treatment plant effluent as cooling water, as scrubber water, or as plant makeup water. [Pg.277]

The major waste streams in bar soap manufacture are the filter backwash, scrubber waters, or condensate from a vacuum drier, and water from equipment washdown. The main contaminant of all these streams is soap that will contribute primarily BOD and COD to the wastewater. [Pg.325]

In the lime or limestone FGD process, SO2 is removed from the flue gas by wet scrubbing with a slurry of calcium oxide or calcium carbonate [3]. The waste solid product is disposed by ponding or landfill. The clear hquid product can be recycled. Many of the lime or limestone systems discharge scrubber waters to control dissolved solids levels. [Pg.586]

Methods and technology were developed to analyze 1000 samples/yr of coal and other pollution-related samples. The complete trace element analysis of 20-24 samples/wk averaged 3-3.5 man-hours/sample. The computerized data reduction scheme could identify and report data on as many as 56 elements. In addition to coal, samples of fly ash, bottom ash, crude oil, fuel oil, residual oil, gasoline, jet fuel, kerosene, filtered air particulates, ore, stack scrubber water, clam tissue, crab shells, river sediment and water, and corn were analyzed. Precision of the method was 25% based on all elements reported in coal and other sample matrices. Overall accuracy was estimated at 50%. [Pg.106]

Other sources of silver release to surface waters include textile plant wastewater effluent (Rawlings and Samfield 1979) petroleum refinery effluents (Snider and Manning 1982) and quench water and fly ash scrubber water efflunents from municipal incinerators (Law and Gordon 1979). Silver was detected in 7 of 58 (12%) samples from the National Urban Runoff Program survey (Cole et al. [Pg.100]

The collection of particles is achieved in a countercurrent flow between the water droplets and the particulates. In a cyclonic scrubber, water is injected into the cyclone chamber from sprayers located along the central axis, as shown in Fig. 7.19. The water droplets capture particles mainly in the cross-flow motion and are thrown to the wall by centrifugal force, forming a layer of slurry flow moving downward to the outlet at the bottom of the cyclone. Another type of scrubber employs a venturi, as shown in Fig. 7.20. The velocity of the gas-solid suspension flow is accelerated to a maximum value at the venturi throat. The inlet of the water spray is located just before the venturi throat so that the maximum difference in velocity between droplets and particles is obtained to achieve higher collection efficiency by inertial impaction. A venturi scrubber is usually operated with a particle collector such as a settling chamber or cyclone for slurry collection. [Pg.324]

If separate incinerator facilities for hazardous and nonhazardous waste are available, segregation of hazardous waste can be both cost-effective and environmentally more acceptable. Compared with incinerators for municipal waste, incinerators for hazardous waste require a more expensive design, more careful operation, higher costs for obtaining permits, and regulated treatment of ash and scrubber water. Consequently, incineration of nonhazardous waste in hazardous waste facilities is costly. [Pg.516]

Specimen Scrubber water from experimental liquefaction light oil (PETC, DCD 11, 1979), Pittsburgh Seam, Blacksville 2 coal. pH = 9.1 redox potential = -0.29 volt vs N.H.E. [Pg.424]

Figure 2. Differentiation between liquefaction and gasification by-product waters by pH and redox potential characteristics 1 and 2, waste water PETC coal liquefaction development unit, disposable catalyst, runs DCD 13B and DCD 12 3, waste water, SRC-1 plant 4, scrubber water, light oil, Blacksville No. 2 coal 5, waste water, fixed-bed gasifier, METC 6, waste water, fluidized-bed gasifier, Rosebud coal, PETC 7, gasifier condensate, 40 atm Nt, catalyst-impregnated Illinois 6 coal 8, gasifier condensate, 40 atm He, Montana Rosebud coal. Figure 2. Differentiation between liquefaction and gasification by-product waters by pH and redox potential characteristics 1 and 2, waste water PETC coal liquefaction development unit, disposable catalyst, runs DCD 13B and DCD 12 3, waste water, SRC-1 plant 4, scrubber water, light oil, Blacksville No. 2 coal 5, waste water, fixed-bed gasifier, METC 6, waste water, fluidized-bed gasifier, Rosebud coal, PETC 7, gasifier condensate, 40 atm Nt, catalyst-impregnated Illinois 6 coal 8, gasifier condensate, 40 atm He, Montana Rosebud coal.
Compounds in the water-insoluble liquid produced at around 600°C with current high value (greater than S2.00/kg) and commercial uses include vanillin and catechol (1,2-benzenediol, pyrocatechol). However these compounds are difficult to remove economically as discussed below and do have adhesive value. It is more feasible to remove catechol from the scrubber water as discussed below. [Pg.1199]


See other pages where Water scrubber is mentioned: [Pg.160]    [Pg.89]    [Pg.67]    [Pg.68]    [Pg.516]    [Pg.744]    [Pg.923]    [Pg.934]    [Pg.1193]    [Pg.13]    [Pg.99]    [Pg.426]    [Pg.501]    [Pg.501]    [Pg.537]    [Pg.65]    [Pg.107]    [Pg.323]    [Pg.256]    [Pg.160]    [Pg.323]    [Pg.2506]    [Pg.346]    [Pg.323]   
See also in sourсe #XX -- [ Pg.460 ]




SEARCH



Fume scrubber water recycle

Scrubbers

Washing water Scrubbers

Waste water from wet scrubbers used in cupola melting

Water spray cyclone scrubber

© 2024 chempedia.info