Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solubility Subject

An interesting consequence of covering a surface with a film is that the rate of evaporation of the substrate is reduced. Most of these studies have been carried out with films spread on aqueous substrates in such cases the activity of the water is practically unaffected because of the low solubility of the film material, and it is only the rate of evaporation and not the equilibrium vapor pressure that is affected. Barnes [273] has reviewed the general subject. [Pg.146]

Dislocation theory as a portion of the subject of solid-state physics is somewhat beyond the scope of this book, but it is desirable to examine the subject briefly in terms of its implications in surface chemistry. Perhaps the most elementary type of defect is that of an extra or interstitial atom—Frenkel defect [110]—or a missing atom or vacancy—Schottky defect [111]. Such point defects play an important role in the treatment of diffusion and electrical conductivities in solids and the solubility of a salt in the host lattice of another or different valence type [112]. Point defects have a thermodynamic basis for their existence in terms of the energy and entropy of their formation, the situation is similar to the formation of isolated holes and erratic atoms on a surface. Dislocations, on the other hand, may be viewed as an organized concentration of point defects they are lattice defects and play an important role in the mechanism of the plastic deformation of solids. Lattice defects or dislocations are not thermodynamic in the sense of the point defects their formation is intimately connected with the mechanism of nucleation and crystal growth (see Section IX-4), and they constitute an important source of surface imperfection. [Pg.275]

Water-soluble globular proteins usually have an interior composed almost entirely of non polar, hydrophobic amino acids such as phenylalanine, tryptophan, valine and leucine witl polar and charged amino acids such as lysine and arginine located on the surface of thi molecule. This packing of hydrophobic residues is a consequence of the hydrophobic effeci which is the most important factor that contributes to protein stability. The molecula basis for the hydrophobic effect continues to be the subject of some debate but is general considered to be entropic in origin. Moreover, it is the entropy change of the solvent that i... [Pg.531]

More water soluble than di-methylglyoxime less subject to coprecipitation with metal chelate. [Pg.1144]

Metformin. Metformin [657-24-9] (1,1-dimethylbiguanide), mol wt 129.17, forms crystals from propanol, mp 218—220°C, and is soluble in water and 95% ethanol, but practically insoluble in ether and chloroform. Metformin, an investigational dmg in the United States, does not increase basal or meal-stimulated insulin secretion. It lowers blood glucose levels in hyperglycemic patients with Type II diabetes but has no effect on blood glucose levels in normal subjects. It does not cause hypoglycemia. Successful metformin therapy usually is associated with no or some weight loss. [Pg.342]

Chlorine heptoxide is more stable than either chlorine monoxide or chlorine dioxide however, the CX C) detonates when heated or subjected to shock. It melts at —91.5°C, bods at 80°C, has a molecular weight of 182.914, a heat of vapori2ation of 34.7 kj/mol (8.29 kcal/mol), and, at 0°C, a vapor pressure of 3.2 kPa (23.7 mm Hg) and a density of 1.86 g/mL (14,15). The infrared spectmm is consistent with the stmcture O CIOCIO (16). Cl O decomposes to chlorine and oxygen at low (0.2—10.7 kPa (1.5—80 mm Hg)) pressures and in a temperature range of 100—120°C (17). It is soluble in ben2ene, slowly attacking the solvent with water to form perchloric acid it also reacts with iodine to form iodine pentoxide and explodes on contact with a flame or by percussion. Reaction with olefins yields the impact-sensitive alkyl perchlorates (18). [Pg.65]

The WAG process has been used extensively in the field, particularly in supercritical CO2 injection, with considerable success (22,157,158). However, a method to further reduce the viscosity of injected gas or supercritical fluid is desired. One means of increasing the viscosity of CO2 is through the use of supercritical C02-soluble polymers and other additives (159). The use of surfactants to form low mobihty foams or supercritical CO2 dispersions within the formation has received more attention (160—162). Foam has also been used to reduce mobihty of hydrocarbon gases and nitrogen. The behavior of foam in porous media has been the subject of extensive study (4). X-ray computerized tomographic analysis of core floods indicate that addition of 500 ppm of an alcohol ethoxyglycerylsulfonate increased volumetric sweep efficiency substantially over that obtained in a WAG process (156). [Pg.193]

There have been numerous communications on the subject of biodegradation test methods, including aerobic compost (30), anaerobic bioreactor (31), general methodology and future directions (32—34), and a fine review article (24). ASTM (22) and MITI (35) have also set forth standard testing protocols for plastics, as shown in Table 2, whereas OECD test methods (29) are more suited to water-soluble polymers. [Pg.475]

CeUulose is soluble only in unusual and complex solvent systems. The subject has been reviewed (84—87). Commercially, dissolving pulps, which have lower molecular weights, are used along with strong alkaU and derivatization. CeUulose subjected to high temperature and pressure during the steam explosion process can be dissolved in strong base (88). [Pg.242]

Cell Disruption Intracellular protein products are present as either soluble, folded proteins or inclusion bodies. Release of folded proteins must be carefully considered. Active proteins are subject to deactivation and denaturation, and thus require the use of gentle conditions. In addition, due consideration must be given to the suspending medium lysis buffers are often optimized to promote protein stability and protect the protein from proteolysis and deactivation. Inclusion bodies, in contrast, are protected by virtue of the protein agglomeration. More stressful conditions are typically employed for their release, which includes going to higher temperatures if necessaiy. For native proteins, gentler methods and temperature control are required. [Pg.2058]

Another factor in this reaction sequence is also subject to external modification, namely, moderation of the basic oceanic dissolution of CO2 through temperature dependence of its solubility, S. The latter is defined as ... [Pg.20]

Some metals are soluble as atomic species in molten silicates, the most quantitative studies having been made with Ca0-Si02-Al203(37, 26, 27 mole per cent respectively). The results at 1800 K gave solubilities of 0.055, 0.16, 0.001 and 0.101 for the pure metals Cu, Ag, Au and Pb. When these metal solubilities were compared for metal alloys which produced 1 mm Hg pressure of each of these elements at this temperature, it was found drat the solubility decreases as the atomic radius increases, i.e. when die difference in vapour pressure of die pure metals is removed by alloy formation. If the solution was subjected to a temperature cycle of about 20 K around the control temperamre, the copper solution precipitated copper particles which grew with time. Thus the liquid metal drops, once precipitated, remained stable thereafter. [Pg.310]

Dry aerosols, or particulate matter, differ so much from the carrying gas stream that their removal should present no major difficulties. The aerosol is different physically, chemically, and electrically. It has vastly different inertial properties than the carrying gas stream and can be subjected to an electric charge. It may be soluble in a specific liquid. With such a variety of removal mechanisms that can be applied, it is not surprising that particulate matter, such as mineral dust, can be removed by a filter, wet scrubber, or electrostatic precipitator with equally satisfactory results. [Pg.462]

The equilibrium solubility of common inorganic gases in petroleum liquids can now be estimated by nomograph. The relationship is based on an earlier correlation established by the U.S. National Aeronautics and Space Administration and the subject of a standard method approved by the American Society of Testing and Materials. [Pg.366]

To produce a moulding composition, aniline is first treated with hydrochloric acid to produce water-soluble aniline hydrochloride. The aniline hydrochloride solution is then run into a large wooden vat and formaldehyde solution is run in at a slow but uniform rate, the whole mix being subject to continuous agitation. Reaction occurs immediately to give a deep orange-red product. The resin is still a water-soluble material and so it is fed into a 10% caustic soda solution to react with the hydrochloride, thus releasing the resin as a creamy yellow slurry. The slurry is washed with a counter-current of fresh water, dried and ball-milled. [Pg.690]


See other pages where Solubility Subject is mentioned: [Pg.80]    [Pg.80]    [Pg.439]    [Pg.565]    [Pg.351]    [Pg.221]    [Pg.344]    [Pg.48]    [Pg.218]    [Pg.199]    [Pg.380]    [Pg.434]    [Pg.33]    [Pg.296]    [Pg.472]    [Pg.548]    [Pg.3]    [Pg.279]    [Pg.21]    [Pg.316]    [Pg.267]    [Pg.278]    [Pg.289]    [Pg.311]    [Pg.295]    [Pg.2057]    [Pg.14]    [Pg.503]    [Pg.129]    [Pg.869]    [Pg.434]    [Pg.451]    [Pg.238]    [Pg.249]    [Pg.374]    [Pg.36]    [Pg.555]   
See also in sourсe #XX -- [ Pg.75 ]

See also in sourсe #XX -- [ Pg.425 ]

See also in sourсe #XX -- [ Pg.77 ]




SEARCH



Subject index soluble

Subject lead, water solubility

Subject soluble ions

Subject soluble silicates

Subject thermodynamic solubility

Subject water-soluble

© 2024 chempedia.info