Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject soluble ions

Acid soluble rare earth salt solution after the removal of cerium may be subjected to ion exchange, fractional crystalhzation or solvent extraction processes to separate individual rare earths. Europium is obtained commercially from rare earths mixture by the McCoy process. Solution containing Eu3+ is treated with Zn in the presence of barium and sulfate ions. The triva-lent europium is reduced to divalent state whereby it coprecipitates as europium sulfate, EuS04 with isomorphous barium sulfate, BaS04. Mixed europium(ll) barium sulfate is treated with nitric acid or hydrogen peroxide to oxidize Eu(ll) to Eu(lll) salt which is soluble. This separates Eu3+ from barium. The process is repeated several times to concentrate and upgrade europium content to about 50% of the total rare earth oxides in the mixture. Treatment with concentrated hydrochloric acid precipitates europium(ll) chloride dihydrate, EuCb 2H2O with a yield over 99%. [Pg.295]

The mechanism by which cations are transported across a membrane is represented in Figure 18a. A cation-carrier complex is initially formed at the interface. This lipophilic species then diffuses across the membrane as an ion pair and dissociates at the other interface to water soluble ion pair and membrane-soluble carrier. The final step is back diffusion of the free carrier to the initial interface. The factors which influence transport rates and selectivity have been the subject of much research (79PAC979, B-81MI52102). [Pg.755]

In the present study, synthetic analcites having fixed Al/Si ratios of 2/3, 1/2, and 1/3 were subjected to ion exchange with a series of cations of various size, charge, and polarizability to fix limits of crystalline solubility and to determine the effects of compositional change on structure. Structure data as a function of temperature and pH2o (to be presented in a future publication) are available in a doctoral thesis by Balgord (2). [Pg.147]

The reaction is a sensitive one, but is subject to a number of interferences. The solution must be free from large amounts of lead, thallium (I), copper, tin, arsenic, antimony, gold, silver, platinum, and palladium, and from elements in sufficient quantity to colour the solution, e.g. nickel. Metals giving insoluble iodides must be absent, or present in amounts not yielding a precipitate. Substances which liberate iodine from potassium iodide interfere, for example iron(III) the latter should be reduced with sulphurous acid and the excess of gas boiled off, or by a 30 per cent solution of hypophosphorous acid. Chloride ion reduces the intensity of the bismuth colour. Separation of bismuth from copper can be effected by extraction of the bismuth as dithizonate by treatment in ammoniacal potassium cyanide solution with a 0.1 per cent solution of dithizone in chloroform if lead is present, shaking of the chloroform solution of lead and bismuth dithizonates with a buffer solution of pH 3.4 results in the lead alone passing into the aqueous phase. The bismuth complex is soluble in a pentan-l-ol-ethyl acetate mixture, and this fact can be utilised for the determination in the presence of coloured ions, such as nickel, cobalt, chromium, and uranium. [Pg.684]

In this connection, it must also be borne in mind that the deoxyribonucleic acids subjected to analysis have probably not been homogeneous. Deoxyribonucleic acids have been fractionated by making use of their different solubilities in normal saline,186 by extracting thymus nucleo-his-tone with sodium chloride solutions of increasing concentration,187 by ion-exchange,187 and also by adsorption of the polynucleotide onto histone immobilized on a kieselguhr support.123 It is possible, however, that these are artefacts, since it has been shown that deoxyribonucleic acid fractions extracted from calf-thymus nucleohistone may or may not vary in composition according to the previous treatment of the material.188... [Pg.316]

Because of the vastness of the subject matter, we shall focus our attention on hydrogen bonding interactions between ions and on the possibilities and limitations of their use in the design and construction of molecular materials of desired architectures and/or destined to predetermined functions. Obviously, the crystal engineer (or supramolecular chemist) needs to know the nature of the forces s/he is planning to master, since molecular and ionic crystals, even if constructed with similar building blocks, differ substantially in chemical and physical properties (solubility, melting points, conductivity, mechanical robustness, etc.). [Pg.9]

The unique ability of crown ethers to form stable complexes with various cations has been used to advantage in such diverse processes as isotope separations (Jepson and De Witt, 1976), the transport of ions through artificial and natural membranes (Tosteson, 1968) and the construction of ion-selective electrodes (Ryba and Petranek, 1973). On account of their lipophilic exterior, crown ether complexes are often soluble even in apolar solvents. This property has been successfully exploited in liquid-liquid and solid-liquid phase-transfer reactions. Extensive reviews deal with the synthetic aspects of the use of crown ethers as phase-transfer catalysts (Gokel and Dupont Durst, 1976 Liotta, 1978 Weber and Gokel, 1977 Starks and Liotta, 1978). Several studies have been devoted to the identification of the factors affecting the formation and stability of crown-ether complexes, and many aspects of this subject have been discussed in reviews (Christensen et al., 1971, 1974 Pedersen and Frensdorf, 1972 Izatt et al., 1973 Kappenstein, 1974). [Pg.280]

Chloroform in aqueous solutions at concentrations ranging from 1 to 10% of the solubility limit were subjected to y rays. At a given radiation dose, as the concentration of the solution decreased, the rate of decomposition increased. As the radiation dose and solute concentration were increased, the concentrations of the following degradation products also increased methane, ethane, carbon dioxide, hydrogen, and chloride ions. Conversely, the concentration of oxygen decreased with increased radiation dose and solute concentration (Wu et al, 2002). [Pg.295]

The occurrence of non-carbonaceous material in coals has been the subject of much research, especially in relation to its effect on utilization and ash formation (4-14). In contrast to high rank coals in which minerals constitute almost all of the non-carbonaceous fraction, the low rank coals have two categories of non-carbonaceous material minerals which occur as discrete particles of quartz, marcasite, clays, etc. and inorganics which occur as w er soluble salts and exchangeable ions such as NaCl,... [Pg.21]


See other pages where Subject soluble ions is mentioned: [Pg.290]    [Pg.330]    [Pg.152]    [Pg.153]    [Pg.37]    [Pg.228]    [Pg.221]    [Pg.380]    [Pg.279]    [Pg.316]    [Pg.374]    [Pg.426]    [Pg.208]    [Pg.163]    [Pg.285]    [Pg.455]    [Pg.27]    [Pg.401]    [Pg.244]    [Pg.19]    [Pg.81]    [Pg.275]    [Pg.15]    [Pg.661]    [Pg.309]    [Pg.64]    [Pg.64]    [Pg.139]    [Pg.25]    [Pg.434]    [Pg.2]    [Pg.204]    [Pg.231]    [Pg.291]    [Pg.335]    [Pg.339]    [Pg.248]    [Pg.81]   
See also in sourсe #XX -- [ Pg.401 ]




SEARCH



Soluble ions

Subject solubility

© 2024 chempedia.info