Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject operative techniques

As mentioned previously, the density ESVs must be obtained from the effective bond Hamiltonian eq. (4.1). In terms of the geminal amplitudes, the ESVs are given by eq. (2.78). To get the required direct estimates of the ESVs, we use again the projection operator technique. In terms of the geminal amplitudes (subject to the normalization condition) the projection operator upon die ground state of a geminal has the form ... [Pg.283]

The attainment of the solids just-suspended regime is essential to ensure that all solids are suspended off the tank bottom, thus ensuring that their surface area is fully exposed to the fiuid. Therefore, the ability to determine or predict the minimum impeller speed, Ajs, for the just-suspended state is a critical step in any solid-liquid mixing operation. Techniques for measuring Ajs are discussed elsewhere.In addition, Ajs has been the subject of significant studies and correlations are available to predict it. The most widely used equation for the determination of Ajs is the Zwietering equation... [Pg.1773]

However, subjective and objective analyses of these devices are required to make sure both scientific, regulatory and consumer needs are met. The devices in development are costlier and more complicated when compared with conventional transdermal patch therapies. As such they may contain electrical and mechanical components which could increase the potential safety risks to patients because of poor operator technique or device malfunction. In addition, effects of the device on the skin must be reversible, since any permanent damage to the SC will result in the loss of its barrier properties and hence its function as a protective organ. Regulatory bodies will also require data to substantiate the safety of the device on the skin for either short- or long-term use. Thus, for any of these novel drug delivery technologies to succeed and compete with those already on the market, their safety, efficacy, portability, user-friendliness, cost-effectiveness and potential market have to be addressed. [Pg.133]

The principal advantages of this type of cyclic system with transient operating techniques are apparent in bioprocesses whose maximum productivity is in a transient region. The products of secondary metabolism (Pirt, 1974) are a typical example of this group of processes. Another group consists of processes whose optimal operation requires an optimal substrate concentration— biomass production with bakers yeast, for example (Aiba et al., 1976)—or where the process is subject to substrate inhibition. An important area of application for this is in biological waste water purification. These periodic modes of operation generally show increased productivity. More systematic and detailed study is needed in this area. [Pg.116]

The effects of flow on the diffusion of particles suspended in a simple liquid is an important problem which was analyzed many times along the last 30 years. Several approaches have been followed in order to understand and quantify the effects of the presence of a velocity gradient on the diffusion coefficient D of the particles. Usually, these are restricted to the case of shear flow because this case is more manageable from the mathematical point of view, and because there are several experimental systems that allow the evaluation and validity of the corresponding results. The approaches followed vary from kinetic theory and projector operator techniques, to Langevin and Fokker-Planck equations. Here, we summarize some recent contributions to this subject and their results. [Pg.106]

The book opens with a chapter on the theory underlying the technique of the chief operations of practical organic chemistry it is considered that a proper understanding of these operations cannot be achieved without a knowledge of the appropriate theoretical principles. Chapter II is devoted to a detailed discussion of experimental technique the inclusion of this subject in one chapter leads to economy of space, par ticularly in the description of advanced preparations. It is not expected that the student will employ even the major proportion of the operations described, but a knowledge of their existence is thought desirable for the advanced student so that he may apply them when occasion demands. [Pg.1193]

Two main operational variables that differentiate the flotation of finely dispersed coUoids and precipitates in water treatment from the flotation of minerals is the need for quiescent pulp conditions (low turbulence) and the need for very fine bubble sizes in the former. This is accompHshed by the use of electroflotation and dissolved air flotation instead of mechanically generated bubbles which is common in mineral flotation practice. Electroflotation is a technique where fine gas bubbles (hydrogen and oxygen) are generated in the pulp by the appHcation of electricity to electrodes. These very fine bubbles are more suited to the flotation of very fine particles encountered in water treatment. Its industrial usage is not widespread. Dissolved air flotation is similar to vacuum flotation. Air-saturated slurries are subjected to vacuum for the generation of bubbles. The process finds limited appHcation in water treatment and in paper pulp effluent purification. The need to mn it batchwise renders it less versatile. [Pg.52]

A great disadvantage of PHB is the necessity to operate at very low temperatures (<20 K). Therefore, this recording technique currently has no practical significance but it is subject to intensive research activity (175). One future aspect which may be important, if room temperature materials become available, is the usage of inexpensive semiconductor lasers in the near ir-regime (176). [Pg.155]

Most aroma chemicals are relatively high boiling (80—160°C at 0.4 kPa = 3 mm Hg) Hquids and therefore are subject to purification by vacuum distillation. Because small amounts of decomposition may lead to unacceptable odor contamination, thermal stabiUty of products and by-products is an issue. Important advances have been made in distillation techniques and equipment to allow routine production of 5000 kg or larger batches of various products. In order to make optimal use of equipment and to standardize conditions for distillations and reactions, computer control has been instituted. This is particulady well suited to the multipurpose batch operations encountered in most aroma chemical plants. In some instances, on-line analytical capabihty is being developed to work in conjunction with computer controls. [Pg.85]

In previous studies, the main tool for process improvement was the tubular reactor. This small version of an industrial reactor tube had to be operated at less severe conditions than the industrial-size reactor. Even then, isothermal conditions could never be achieved and kinetic interpretation was ambiguous. Obviously, better tools and techniques were needed for every part of the project. In particular, a better experimental reactor had to be developed that could produce more precise results at well defined conditions. By that time many home-built recycle reactors (RRs), spinning basket reactors and other laboratory continuous stirred tank reactors (CSTRs) were in use and the subject of publications. Most of these served the original author and his reaction well but few could generate the mass velocities used in actual production units. [Pg.279]

Once the driver and driven equipment have been chosen and it is deter mined that none of the items will be subject to any lateral vibration problems, the system torsional analysis is performed. If a calculated torsional natural frequency coincides with any possible source of excitation (Table 9-21, the system must be de-tuned in order to assure reliable operation. A good technique to add to the torsional analysis was presented by Doughty [8 j, and provides a means of gauging the relative sensitivity of changes in each stiffness and inertia in the system at the resonance in question. [Pg.397]

The first five of these techniques involve deformation and this has to be followed by some setting operation which stabilises the new shape. In the case of polymer melt deformation this can be affected by cooling of thermoplastics and cross-linking of thermosetting plastics and similtir comments can apply to deformation in the rubbery state. Solution-cast film and fibre requires solvent evaporation (with also perhaps some chemical coagulation process). Latex suspensions can simply be dried as with emulsion paints or subjected to some... [Pg.158]

In order to ensure the destruction of pathogens, the process of chlorination must achieve certain control of at least one factor and, preferably two, to compensate for fluctuations that occur. For this reason, some authorities on the subject stress the fact that the type and concentration of the chlorine residual must be controlled to ensure adequate disinfection. Only this way, they claim, can chlorination adequately take into account variations in temperature, pH, chlorine demand and types of organisms in the water. While possible to increase minimum contact times, it is difficult to do so. Five to ten minutes is normally all the time available with the type of pressure systems normally used for small water supplies. Many experts feel that satisfactory chlorine residual alone can provide adequate control for disinfection. In their opinion, superchlorination-dechlorination does the best job. Briefly, what is this technique and how does it operate ... [Pg.48]

The most common hazards control technique is a checklist. The checklist is prepared by experienced personnel who are familiar with the design, construction and operation of similar facilities. Checklists are relatively easy to use and provide a guide to the evaluator of items to be considered in evaluating hazards. API RP 14J has examples of two checklists which can be used to evaluate facilities of different complexity. Because production facilities are very similar and have been the subject of many hazard analyses, a checklist analysis to assure compliance with standard practice is recommended for most production facilities. The actual procedure by which the checklist is considered and the manner in which the evaluation is documented to assure compliance varies from case-to-case. [Pg.418]

The incidents listed earlier in this chapter and many others could have been foreseen if the design had been subjected to a hazard and operability study (hazop). This technique allows people to let their imaginations go free and think of all possible ways in which hazards or operating problems might arise. But to reduce the chance that something is missed. [Pg.335]


See other pages where Subject operative techniques is mentioned: [Pg.217]    [Pg.91]    [Pg.152]    [Pg.2631]    [Pg.442]    [Pg.455]    [Pg.724]    [Pg.167]    [Pg.149]    [Pg.149]    [Pg.524]    [Pg.2487]    [Pg.496]    [Pg.562]    [Pg.134]    [Pg.376]    [Pg.196]    [Pg.437]    [Pg.3]    [Pg.144]    [Pg.339]    [Pg.1092]    [Pg.2547]    [Pg.226]    [Pg.264]    [Pg.348]    [Pg.350]    [Pg.241]    [Pg.421]    [Pg.451]    [Pg.416]    [Pg.105]    [Pg.279]    [Pg.36]    [Pg.170]    [Pg.171]   
See also in sourсe #XX -- [ Pg.180 , Pg.181 ]




SEARCH



Operant techniques

Techniques Subject

© 2024 chempedia.info