Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene alcohol

There have been numerous studies on the kinetics of decomposition of A IRK. AIBMe and other dialkyldiazenes.46 Solvent effects on are small by conventional standards but, nonetheless, significant. Data for AIBMe is presented in Table 3.3. The data come from a variety of sources and can be seen to increase in the series where the solvent is aliphatic < ester (including MMA) < aromatic (including styrene) < alcohol. There is a factor of two difference between kA in methanol and k< in ethyl acetate. The value of kA for AIBN is also reported to be higher in aromatic than in hydrocarbon solvents and to increase with the dielectric constant of the medium.31 79 80 Tlic kA of AIBMe and AIBN show no direct correlation with solvent viscosity (see also 3.3.1.1.3), which is consistent with the reaction being irreversible (Le. no cage return). [Pg.73]

Ethylene is used in the manufacture of a wide range of chemicals (Fig. 3) including polyethylene (Figs. 4 and 5), styrene, alcohols, ethylene oxide, and vinyl chloride. [Pg.222]

Asbestos, mineral fibre, resins, acetal styrene, alcohols, phthalates, methyl ethyl ketone, toluene, phenol, isocyanates... [Pg.396]

When the data in Figures 1 and 2 are interpreted in terms of the Odian, Silverman and Wilson models, the last approach raises difficulties. Thus Wilson asstimes that (i) the composition of the styrene-alcohol solution absorbed into the trunk polymer is the same as in the external solution and (ii) the amount of solution absorbed by the trunk polymer is independent of the composition of the external solution. Grafting work by others with the polyethylene-styrene-methanol system indicates that both of these assumptions may not be valid. [Pg.37]

Prepared by epoxidation of styrene with per-oxyelhanoic acid. Reactions are similar to those of aliphatic epoxides (s e, e.g. ethylene oxide). Reacts with alcohols to give mono-ethers, e g. PhCH(0Me)CH20H. Phenols give resins. [Pg.374]

Styrene may be conveniently prepared in the laboratory by heating p-phenylethyl alcohol (Section IV,204) with sohd sodium or potassium hydroxide when an almost quantitative dehydration occurs ... [Pg.1024]

In a 250 ml. distilling flask (1) place 122 g. (119 ml.) of p-phenylethyl alcohol and 40 g. of sodium hydroxide peUets (or 56 g. of potassium hydroxide). Heat is evolved. Warm gently until bubbles commence to form and the mixture separates into two sharply-defined layers. Distil slowly water, etc. passes over first accompamed by the gradual dis appearance of the upper phase. FinaUy the styrene passes over at 140 160° (mainly 150°) coUect this separately in a receiver containing about 0 1 g. of hydroquinone. Dry the distillate with a httle anhydrous calcium chloride or magnesium sulphate, and then distil under reduced pressure (2). C oUect the pure styrene at 42-43°/18 mm. The 3rield is 80 g. Add about 0-2 g. of hydroquinone (anti-oxidant) if it is desired to keep the phenylethylene. [Pg.1024]

Heat 20 g. of styrene (Section IX,6) with 0 -2 g. of benzoyl peroxide (Section IV,196) on a water bath for 60-90 minutes. A glass-bke polymer (polystyrene) is produced. The polymer is soluble in benzene and in dioxan and can be precipitated from its solution by alcohol. [Pg.1025]

Aryl and vinylic bromides and iodides react with the least substituted and most electrophilic carbon atoms of activated olefins, e.g., styrenes, allylic alcohols, a,p-unsaturated esters and nitriles. [Pg.42]

Keto esters are obtained by the carbonylation of alkadienes via insertion of the aikene into an acylpalladium intermediate. The five-membered ring keto ester 22 is formed from l,5-hexadiene[24]. Carbonylation of 1,5-COD in alcohols affords the mono- and diesters 23 and 24[25], On the other hand, bicy-clo[3.3.1]-2-nonen-9-one (25) is formed in 40% yield in THF[26], 1,5-Diphenyl-3-oxopentane (26) and 1,5-diphenylpent-l-en-3-one (27) are obtained by the carbonylation of styrene. A cationic Pd-diphosphine complex is used as the catalyst[27]. [Pg.515]

Section 1115 The simplest alkenylbenzene is styrene (C6H5CH=CH2) An aryl group stabilizes a double bond to which it is attached Alkenylbenzenes are usu ally prepared by dehydration of benzylic alcohols or dehydrohalogena tion of benzylic halides... [Pg.465]

SAN modifier [ACRYLONITRILE POLYTffiRS - SURVEY AND SAN (STYRENE-ACRYLONITRHE CO-POLYTffiRS)] (Vol 1) Poly(ethylene-co-vinyl alcohol)... [Pg.784]

Aqueous mineral acids react with BF to yield the hydrates of BF or the hydroxyfluoroboric acids, fluoroboric acid, or boric acid. Solution in aqueous alkali gives the soluble salts of the hydroxyfluoroboric acids, fluoroboric acids, or boric acid. Boron trifluoride, slightly soluble in many organic solvents including saturated hydrocarbons (qv), halogenated hydrocarbons, and aromatic compounds, easily polymerizes unsaturated compounds such as butylenes (qv), styrene (qv), or vinyl esters, as well as easily cleaved cycHc molecules such as tetrahydrofuran (see Furan derivatives). Other molecules containing electron-donating atoms such as O, S, N, P, etc, eg, alcohols, acids, amines, phosphines, and ethers, may dissolve BF to produce soluble adducts. [Pg.160]

Sulfonated styrene—divinylbensene cross-linked polymers have been appHed in many of the previously mentioned reactions and also in the acylation of thiophene with acetic anhydride and acetyl chloride (209). Resins of this type (Dowex 50, Amherljte IR-112, and Permutit Q) are particularly effective catalysts in the alkylation of phenols with olefins (such as propylene, isobutylene, diisobutylene), alkyl haUdes, and alcohols (210) (see Ion exchange). Superacids. [Pg.564]

An oxirane process utilizes ethylbenzene to make the hydroperoxide, which then is used to make propylene oxide [75-56-9]. The hydroperoxide-producing reaction is similar to the first step of cumene LPO except that it is slower (2,224,316—318). In the epoxidation step, a-phenylethyl alcohol [98-85-1] is the coproduct. It is dehydrated to styrene [100-42-5]. The reported 1992 capacity for styrene by this route was 0.59 X 10 t/yr (319). The corresponding propylene oxide capacity is ca 0.33 x 10 t/yr. The total propylene oxide capacity based on hydroperoxide oxidation of propylene [115-07-1] (coproducts are /-butyl alcohol and styrene) is 1.05 x 10 t/yr (225). [Pg.345]

A review covers the preparation and properties of both MABS and MBS polymers (75). Literature is available on the grafting of methacrylates onto a wide variety of other substrates (76,77). Typical examples include the grafting of methyl methacrylate onto mbbers by a variety of methods chemical (78,79), photochemical (80), radiation (80,81), and mastication (82). Methyl methacrylate has been grafted onto such substrates as cellulose (83), poly(vinyl alcohol) (84), polyester fibers (85), polyethylene (86), poly(styrene) (87), poly(vinyl chloride) (88), and other alkyl methacrylates (89). [Pg.269]

Almost all synthetic binders are prepared by an emulsion polymerization process and are suppHed as latexes which consist of 48—52 wt % polymer dispersed in water (101). The largest-volume binder is styrene—butadiene copolymer [9003-55-8] (SBR) latex. Most SBRlatexes are carboxylated, ie, they contain copolymerized acidic monomers. Other latex binders are based on poly(vinyl acetate) [9003-20-7] and on polymers of acrylate esters. Poly(vinyl alcohol) is a water-soluble, synthetic biader which is prepared by the hydrolysis of poly(viayl acetate) (see Latex technology Vinyl polymers). [Pg.22]

Propylene oxide [75-56-9] (methyloxirane, 1,2-epoxypropane) is a significant organic chemical used primarily as a reaction intermediate for production of polyether polyols, propylene glycol, alkanolamines (qv), glycol ethers, and many other useful products (see Glycols). Propylene oxide was first prepared in 1861 by Oser and first polymerized by Levene and Walti in 1927 (1). Propylene oxide is manufactured by two basic processes the traditional chlorohydrin process (see Chlorohydrins) and the hydroperoxide process, where either / fZ-butanol (see Butyl alcohols) or styrene (qv) is a co-product. Research continues in an effort to develop a direct oxidation process to be used commercially. [Pg.133]

The hydroperoxide process involves oxidation of propjiene (qv) to propylene oxide by an organic hydroperoxide. An alcohol is produced as a coproduct. Two different hydroperoxides are used commercially that result in / fZ-butanol or 1-phenylethanol as the coproduct. The / fZ-butanol (TBA) has been used as a gasoline additive, dehydrated to isobutjiene, and used as feedstock to produce methyl tert-huty ether (MTBE), a gasoline additive. The 1-phenyl ethanol is dehydrated to styrene. ARCO Chemical has plants producing the TBA coproduct in the United States, Erance, and the Netherlands. Texaco has a TBA coproduct plant in the United States. Styrene coproduct plants are operated by ARCO Chemical in the United States and Japan, Shell in the Netherlands, Repsol in Spain, and Yukong in South Korea. [Pg.136]

Hydroperoxide Process. The hydroperoxide process to propylene oxide involves the basic steps of oxidation of an organic to its hydroperoxide, epoxidation of propylene with the hydroperoxide, purification of the propylene oxide, and conversion of the coproduct alcohol to a useful product for sale. Incorporated into the process are various purification, concentration, and recycle methods to maximize product yields and minimize operating expenses. Commercially, two processes are used. The coproducts are / fZ-butanol, which is converted to methyl tert-huty ether [1634-04-4] (MTBE), and 1-phenyl ethanol, converted to styrene [100-42-5]. The coproducts are produced in a weight ratio of 3—4 1 / fZ-butanol/propylene oxide and 2.4 1 styrene/propylene oxide, respectively. These processes use isobutane (see Hydrocarbons) and ethylbenzene (qv), respectively, to produce the hydroperoxide. Other processes have been proposed based on cyclohexane where aniline is the final coproduct, or on cumene (qv) where a-methyl styrene is the final coproduct. [Pg.138]

Rhenium oxides have been studied as catalyst materials in oxidation reactions of sulfur dioxide to sulfur trioxide, sulfite to sulfate, and nitrite to nitrate. There has been no commercial development in this area. These compounds have also been used as catalysts for reductions, but appear not to have exceptional properties. Rhenium sulfide catalysts have been used for hydrogenations of organic compounds, including benzene and styrene, and for dehydrogenation of alcohols to give aldehydes (qv) and ketones (qv). The significant property of these catalyst systems is that they are not poisoned by sulfur compounds. [Pg.164]

A three-step process involving the oxidation of acetophenone, hydrogenation of the ketone to a-phenylethanol, and dehydration of the alcohol to styrene was practiced commercially by Union Carbide (59) until the early 1960s. Other technologies considered during the infancy of the styrene industry include side-chain chlorination of ethylbenzene followed by dehydrochlotination or followed by hydrolysis and dehydration. [Pg.485]

Styrene. Commercial manufacture of this commodity monomer depends on ethylbenzene, which is converted by several means to a low purity styrene, subsequendy distilled to the pure form. A small percentage of styrene is made from the oxidative process, whereby ethylbenzene is oxidized to a hydroperoxide or alcohol and then dehydrated to styrene. A popular commercial route has been the alkylation of benzene to ethylbenzene, with ethylene, after which the cmde ethylbenzene is distilled to give high purity ethylbenzene. The ethylbenzene is direcdy dehydrogenated to styrene monomer in the vapor phase with steam and appropriate catalysts. Most styrene is manufactured by variations of this process. A variety of catalyst systems are used, based on ferric oxide with other components, including potassium salts, which improve the catalytic activity (10). [Pg.494]

Chem Systems Inc. proposed a process in which ben2yl alcohol obtained by an undisclosed direct oxidation of toluene is homologated with synthesis gas to yield 2-phen5iethyl alcohol, which is then readily dehydrated to styrene (57). This process eliminates the intermediate formation of methanol from synthesis gas but does require the independent production of ben2yl alcohol. [Pg.190]


See other pages where Styrene alcohol is mentioned: [Pg.130]    [Pg.520]    [Pg.73]    [Pg.130]    [Pg.520]    [Pg.73]    [Pg.870]    [Pg.900]    [Pg.1014]    [Pg.89]    [Pg.511]    [Pg.196]    [Pg.939]    [Pg.186]    [Pg.234]    [Pg.323]    [Pg.357]    [Pg.477]    [Pg.68]    [Pg.253]    [Pg.469]    [Pg.67]    [Pg.75]    [Pg.81]    [Pg.129]    [Pg.512]    [Pg.69]   
See also in sourсe #XX -- [ Pg.190 ]




SEARCH



Alcohol polyethylene using styrene

Alcohols reactions with styrene oxid

Allyl alcohol copolymers with styrene

Styrene oxide reactions with alcohols

Styrene-allyl alcohol resins

© 2024 chempedia.info