Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene propylene oxide

Hydroperoxide Process. The hydroperoxide process to propylene oxide involves the basic steps of oxidation of an organic to its hydroperoxide, epoxidation of propylene with the hydroperoxide, purification of the propylene oxide, and conversion of the coproduct alcohol to a useful product for sale. Incorporated into the process are various purification, concentration, and recycle methods to maximize product yields and minimize operating expenses. Commercially, two processes are used. The coproducts are / fZ-butanol, which is converted to methyl tert-huty ether [1634-04-4] (MTBE), and 1-phenyl ethanol, converted to styrene [100-42-5]. The coproducts are produced in a weight ratio of 3—4 1 / fZ-butanol/propylene oxide and 2.4 1 styrene/propylene oxide, respectively. These processes use isobutane (see Hydrocarbons) and ethylbenzene (qv), respectively, to produce the hydroperoxide. Other processes have been proposed based on cyclohexane where aniline is the final coproduct, or on cumene (qv) where a-methyl styrene is the final coproduct. [Pg.138]

Styrene is the monomer for polystyrene, styrene-butadiene rubber and ABS (copolymer of acrylonitrile, butadiene, and styrene). Propylene oxide is mainly used for the manufachore of propylene glycol and polyurethanes. [Pg.50]

The feasibility of doubling the current ethylene production, which is judged one of the most efficient in the world, is being studied and initial results are promising. Also a massive project to link the islands in the southwest of the main island is underway providing the necessary space tor industry expansion. A 110 KTPA adipic acid (nylon precursor) is under construction with a completion date of 1994. Also projects have been announced for other plastic precursors and monomers such as styrene, propylene oxide, polyether polyols, acrylic acid and further aromatics capacity. [Pg.67]

Styrene is manufactured by alkylating benzene with ethene followed by dehydrogenation, or from petroleum reformate coproduction with propylene oxide. Styrene is used almost exclusively for the manufacture of polymers, of which the most important are polystyrene, ABS plastics and styrene-butadiene rubber. U.S. production 1980 3 megatonnes. [Pg.374]

An oxirane process utilizes ethylbenzene to make the hydroperoxide, which then is used to make propylene oxide [75-56-9]. The hydroperoxide-producing reaction is similar to the first step of cumene LPO except that it is slower (2,224,316—318). In the epoxidation step, a-phenylethyl alcohol [98-85-1] is the coproduct. It is dehydrated to styrene [100-42-5]. The reported 1992 capacity for styrene by this route was 0.59 X 10 t/yr (319). The corresponding propylene oxide capacity is ca 0.33 x 10 t/yr. The total propylene oxide capacity based on hydroperoxide oxidation of propylene [115-07-1] (coproducts are /-butyl alcohol and styrene) is 1.05 x 10 t/yr (225). [Pg.345]

The temperature of esterification has a significant influence on isomerization rate, which does not proceed above 50% at reaction temperatures below 150°C. In resins produced rapidly by using propylene oxide and mixed phthaUc and maleic anhydrides at 150°C, the polyester polymers, which can be formed almost exclusively in the maleate conformation, show low cross-linking reaction rates with styrene. [Pg.315]

Propylene oxide [75-56-9] (methyloxirane, 1,2-epoxypropane) is a significant organic chemical used primarily as a reaction intermediate for production of polyether polyols, propylene glycol, alkanolamines (qv), glycol ethers, and many other useful products (see Glycols). Propylene oxide was first prepared in 1861 by Oser and first polymerized by Levene and Walti in 1927 (1). Propylene oxide is manufactured by two basic processes the traditional chlorohydrin process (see Chlorohydrins) and the hydroperoxide process, where either / fZ-butanol (see Butyl alcohols) or styrene (qv) is a co-product. Research continues in an effort to develop a direct oxidation process to be used commercially. [Pg.133]

The hydroperoxide process involves oxidation of propjiene (qv) to propylene oxide by an organic hydroperoxide. An alcohol is produced as a coproduct. Two different hydroperoxides are used commercially that result in / fZ-butanol or 1-phenylethanol as the coproduct. The / fZ-butanol (TBA) has been used as a gasoline additive, dehydrated to isobutjiene, and used as feedstock to produce methyl tert-huty ether (MTBE), a gasoline additive. The 1-phenyl ethanol is dehydrated to styrene. ARCO Chemical has plants producing the TBA coproduct in the United States, Erance, and the Netherlands. Texaco has a TBA coproduct plant in the United States. Styrene coproduct plants are operated by ARCO Chemical in the United States and Japan, Shell in the Netherlands, Repsol in Spain, and Yukong in South Korea. [Pg.136]

Ethylbenzene Hydroperoxide Process. Figure 4 shows the process flow sheet for production of propylene oxide and styrene via the use of ethylbenzene hydroperoxide (EBHP). Liquid-phase oxidation of ethylbenzene with air or oxygen occurs at 206—275 kPa (30—40 psia) and 140—150°C, and 2—2.5 h are required for a 10—15% conversion to the hydroperoxide. Recycle of an inert gas, such as nitrogen, is used to control reactor temperature. Impurities ia the ethylbenzene, such as water, are controlled to minimize decomposition of the hydroperoxide product and are sometimes added to enhance product formation. Selectivity to by-products include 8—10% acetophenone, 5—7% 1-phenylethanol, and <1% organic acids. EBHP is concentrated to 30—35% by distillation. The overhead ethylbenzene is recycled back to the oxidation reactor (170—172). [Pg.139]

Fig. 4. The ethylbenzene (EB) hydiopeioxide process to propylene oxide (PO) and styrene (170—187). Fig. 4. The ethylbenzene (EB) hydiopeioxide process to propylene oxide (PO) and styrene (170—187).
After epoxidation, propylene oxide, excess propylene, and propane are distilled overhead. Propane is purged from the process propylene is recycled to the epoxidation reactor. The bottoms Hquid is treated with a base, such as sodium hydroxide, to neutralize the acids. Acids in this stream cause dehydration of the 1-phenylethanol to styrene. The styrene readily polymerizes under these conditions (177—179). Neutralization, along with water washing, allows phase separation such that the salts and molybdenum catalyst remain in the aqueous phase (179). Dissolved organics in the aqueous phase ate further recovered by treatment with sulfuric acid and phase separation. The organic phase is then distilled to recover 1-phenylethanol overhead. The heavy bottoms are burned for fuel (180,181). [Pg.140]

Styrene manufacture by dehydrogenation of ethylbenzene is simple ia concept and has the virtue of beiag a siagle-product technology, an important consideration for a product of such enormous volume. This route is used for nearly 90% of the worldwide styrene production. The rest is obtained from the coproduction of propylene oxide (PO) and styrene (SM). The PO—SM route is complex and capital-iatensive ia comparison to dehydrogenation of ethylbenzene, but it stiU can be very attractive. However, its use is limited by the mismatch between the demands for styrene and propylene oxides (qv). [Pg.481]

PO—SM Coproduction. The copioduction of propylene oxide and styrene (40—49) includes three reaction steps (/) oxidation of ethylbenzene to ethylbenzene hydroperoxide, (2) epoxidation of ethylbenzene hydroperoxide with propylene to form a-phenylethanol and propylene oxide, and (3) dehydration of a-phenylethanol to styrene. [Pg.484]

Polyall lene Oxide Block Copolymers. The higher alkylene oxides derived from propjiene, butylene, styrene (qv), and cyclohexene react with active oxygens in a manner analogous to the reaction of ethylene oxide. Because the hydrophilic oxygen constitutes a smaller proportion of these molecules, the net effect is that the oxides, unlike ethylene oxide, are hydrophobic. The higher oxides are not used commercially as surfactant raw materials except for minor quantities that are employed as chain terminators in polyoxyethylene surfactants to lower the foaming tendency. The hydrophobic nature of propylene oxide units, —CH(CH2)CH20—, has been utilized in several ways in the manufacture of surfactants. Manufacture, properties, and uses of poly(oxyethylene- (9-oxypropylene) have been reviewed (98). [Pg.254]

See Butylenes Cimorohitcrins Ethylene oxide Olefins Propylene oxide Styrenes. [Pg.362]

Make Useful Coproducts. The success of this approach to process development is heavily dependent on the market situation but in suitable cases where there is market demand for the total output of both products such processes can be successful. Examples here are the coproduction of phenol and acetone, which is essentially noncatalytic, and the more recently developed process for the cooxidation of ethyl benzene and propylene to produce propylene oxide and styrene. [Pg.241]

In degree 2 only reactivity degrees are treated vis- i-vis exothermic polymerization in particular and addition reactions on the double bond (ethylene, butadiene, styrene, propylene), easy peroxidation (isopropyl oxide, acetaldehyde), hydrolysis (acetic anhydride). Possibly only propionitrile and substances with code 0 have an actual NFPA stability code. Every time one has to deal with the NFPA code one has to interpret it after carefully reading the paragraphs in Part Two. [Pg.122]

The reaction of olefin epoxidation by peracids was discovered by Prilezhaev [235]. The first observation concerning catalytic olefin epoxidation was made in 1950 by Hawkins [236]. He discovered oxide formation from cyclohexene and 1-octane during the decomposition of cumyl hydroperoxide in the medium of these hydrocarbons in the presence of vanadium pentaoxide. From 1963 to 1965, the Halcon Co. developed and patented the process of preparation of propylene oxide and styrene from propylene and ethylbenzene in which the key stage is the catalytic epoxidation of propylene by ethylbenzene hydroperoxide [237,238]. In 1965, Indictor and Brill [239] published studies on the epoxidation of several olefins by 1,1-dimethylethyl hydroperoxide catalyzed by acetylacetonates of several metals. They observed the high yield of oxide (close to 100% with respect to hydroperoxide) for catalysis by molybdenum, vanadium, and chromium acetylacetonates. The low yield of oxide (15-28%) was observed in the case of catalysis by manganese, cobalt, iron, and copper acetylacetonates. The further studies showed that molybdenum, vanadium, and... [Pg.415]

Montoro A process for making styrene and propylene oxide. Named after the eponomous company. The process was to be used in Repsol Quimica s plant in Tarragona. [Pg.183]

SMPO [styrene monomer propylene oxide] A process for making propylene oxide by the catalytic epoxidation of propylene. The catalyst contains a compound of vanadium, tungsten, molybdenum, or titanium on a silica support. Developed by Shell and operated in The Netherlands since 1978. [Pg.248]

Propylene oxide selectivity, 20 806-807 Propylene oxide vapors, 20 811 Propylene oxide-styrene (PO-SM)... [Pg.768]

Potassium peroxodisulfate, 4668 f 2-Propen-l-ol, 1223 f Propylene oxide, 1225 Pyridine N--oxide, 1849 Sodium azide, 4758 Sodium chloroacetate, 0694 Sodium methoxide, 0464 Sodium 3-nitrobenzenesulfonate, 2184 Sodium peroxodisulfate, 4809 Sodium trichloroacetate, 0608 Styrene, 2945 Sucrose, 3558... [Pg.407]

The dominant share of styrene production comes from dehydrogenation of EB in plants like that shown in Figure 8-5. Some comes as a coproduct in propylene oxide/styrene plants. An even smaller amount is recovered from the gasoline fraction of olefins plants cracking heavy liquids. [Pg.125]

A few plants are designed to produce styrene from EB but as a coproduct with propylene oxide (PO). In this process, EB is oxidized to a hydroperoxide (A in Figure 8—8) by bubbling air through the liquid EB in the presence of a catalyst. Hydroperoxides are, by their nature, very unstable compounds (one of the reasons that bleach, another hydroperoxide, works so well). So exposure to high temperatures has to be limited. The reactions are usually run at about 320°F and 500 psi pressure. Heat exchangers and multiple vessels are used to control the temperatures. Pressures are not critical in this process. [Pg.129]

The reactor effluent is distilled and unreacted EB is recycled. The EB hydroperoxide is then reacted with propylene at 250°F and pressure in the range of 250-700 psi in the presence of a metal catalyst to produce propylene oxide and methylbenzyl alcohol B in Figure 8-7). The reactor mixture is separated by multiple fractionators. Unreacted propylene and EB are recycled. PO is recovered overhead. The methyl benzyl alcohol is easily dehydrated in the vapor stage at 450—500° F and 500 psi pressure over a titanium dioxide or silica gel catalyst to form styrene. Acephenone is one of the by-products. [Pg.130]

Write the equation for the indirect oxidation of ethylbenzene to propylene oxide and styrene. [Pg.168]


See other pages where Styrene propylene oxide is mentioned: [Pg.142]    [Pg.142]    [Pg.477]    [Pg.253]    [Pg.317]    [Pg.75]    [Pg.142]    [Pg.476]    [Pg.481]    [Pg.176]    [Pg.558]    [Pg.696]    [Pg.251]    [Pg.192]    [Pg.85]    [Pg.151]    [Pg.196]    [Pg.1642]    [Pg.17]    [Pg.132]    [Pg.332]    [Pg.300]    [Pg.91]    [Pg.103]    [Pg.129]    [Pg.166]   
See also in sourсe #XX -- [ Pg.508 ]




SEARCH



Oxidation styrene

Propylene oxide

Propylene oxide oxidation

Propylene oxide/styrene monomer process

Styrene and Propylene Oxide (SMPO Process)

Styrene monomer propylene oxide

Styrene monomer propylene oxide effects

Styrene monomer propylene oxide reaction process

Styrene oxide

Styrenes oxidative

© 2024 chempedia.info