Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium, toxicity

Divalproex sodium toxicity is manifested by drowsiness, weakness, incoordination, and confusion (Menkes, 1999) Treatment is supportive, requiring hospitalization. [Pg.319]

Excess Na ions in the soil solution can be inhibitory to certain plant processes. Plant sensitivity to various Na levels in soil is dependent on plant species and stage of plant development. Sodium toxicity to higher plants is characterized by leaf-tip burn, necrotic spots, and limited leaf expansion, thus reducing yield. [Pg.408]

Sodium concentration in actual brines is greater than 1000 mg L 1 and varies widely. Concentrations in water greater than 69 mg L"1 can be toxic to crops. Sodium toxicity is closely related to the level of calcium (Ca) in the water or in the soil. If water of high sodium content is applied to a soil, it moves soil calcium to a greater depth. Under low root zone soil calcium levels, sodium can be highly toxic. [Pg.411]

Extremely sensitive (ESP = 2-10) Deciduous fruits Nuts Citrus Avocado Sodium toxicity symptoms even at low ESP values... [Pg.296]

C10H10N4O2S. White powder, which darkens on exposure to light m.p. 255-256 C. Prepared by condensing p-acet-amidobenzenesulphonyl chloride with 2-aminopyrimidine and subsequent hydrolysis. Soluble sulphadiazine is the sodium salt. Sulphadiazine is the least toxic of the more potent sulphonamides. ... [Pg.376]

The best azide to use these days is sodium azide (NaNs). It is inexpensive and unwatched. All azides have the potential to explode upon degradation and are toxic to breathe. The methods... [Pg.152]

Tests with animals have revealed that dioxin is one of the most toxic substances known Toward mice it IS about 2000 times more toxic than strychnine and about 150 000 times more toxic than sodium cyanide Fortunately however available evidence in dicates that humans are far more resistant to dioxin than are test animals and so far there have been no human fatalities directly attributable to dioxin The most prominent short term symptom seen so far has been a severe skin disorder known as chloracne Yet to be determined is the answer to the question of... [Pg.1010]

Many municipal water sources are chlorinated and contain sufficiently high levels of chlorine so as to be toxic to aquatic life. Chlorine can be removed by passing the water through activated charcoal filters or through the use of sodium thiosulfate metered into the incoming water. Municipal water is usually not used in aquaculture operations that utilize large quantities of water, either continuously or periodically, because of the initial high cost of the water and the cost of pretreatment to remove chlorine. [Pg.19]

Sodium trichloroacetate [650-51-17, C2Cl202Na, is used as a herbicide for various grasses and cattails (2). The free acid has been used as an astringent, antiseptic, and polymerisation catalyst. The esters have antimicrobial activity. The oral toxicity of sodium trichloroacetate is quite low (LD q rats, 5.0 g/kg). Although very corrosive to skin, trichloroacetic acid does not have the skin absorption toxicity found with chloroacetic acid (28). [Pg.89]

The reaction with sodium sulfite or bisulfite (5,11) to yield sodium-P-sulfopropionamide [19298-89-6] (C3H7N04S-Na) is very useful since it can be used as a scavenger for acrylamide monomer. The reaction proceeds very rapidly even at room temperature, and the product has low toxicity. Reactions with phosphines and phosphine oxides have been studied (12), and the products are potentially useful because of thek fire retardant properties. Reactions with sulfide and dithiocarbamates proceed readily but have no appHcations (5). However, the reaction with mercaptide ions has been used for analytical purposes (13)). Water reacts with the amide group (5) to form hydrolysis products, and other hydroxy compounds, such as alcohols and phenols, react readily to form ether compounds. Primary aUphatic alcohols are the most reactive and the reactions are compHcated by partial hydrolysis of the amide groups by any water present. [Pg.133]

Boron. The principal materials used are borax [1303-96-4] sodium pentaborate, sodium tetraborate, partially dehydrated borates, boric acid [10043-35-3] and boron frits. Soil appHcation rates of boron for vegetable crops and alfalfa are usually in the range of 0.5—3 kg/hm. Lower rates are used for more sensitive crops. Both soil and foHar appHcation are practiced but soil appHcations remain effective longer. Boron toxicity is not often observed in field appHcations (see Boron compounds). [Pg.242]

Toxicity. Fluoroborates are excreted mostly in the urine (22). Sodium fluoroborate is absorbed almost completely into the human bloodstream and over a 14-d experiment all of the NaBF ingested was found in the urine. Although the fluoride ion is covalently bound to boron, the rate of absorption of the physiologically inert BF from the gastrointestinal tract of rats exceeds that of the physiologically active simple fluorides (23). [Pg.165]

Fluoroacetic acid [144-49-OJ, FCH2COOH, is noted for its high, toxicity to animals, including humans. It is sold in the form of its sodium salt as a rodenticide and general mammalian pest control agent. The acid has mp, 33°C bp, 165°C heat of combustion, —715.8 kJ/mol( —171.08 kcal/mol) (1) enthalpy of vaporization, 83.89 kJ /mol (20.05 kcal/mol) (2). Some thermodynamic and transport properties of its aqueous solutions have been pubHshed (3), as has the molecular stmcture of the acid as deterrnined by microwave spectroscopy (4). Although first prepared in 1896 (5), its unusual toxicity was not pubhshed until 50 years later (6). The acid is the toxic constituent of a South African plant Dichapetalum i mosum better known as gifirlaar (7). At least 24 other poisonous plant species are known to contain it (8). [Pg.307]

Toxicity. Sodium fluoroacetate is one of the most effective all-purpose rodenticides known (18). It is highly toxic to all species of rats tested and can be used either in water solution or in bait preparations. Its absence of objectionable taste and odor and its delayed effects lead to its excellent acceptance by rodents. It is nonvolatile, chemically stable, and not toxic or irritating to the unbroken skin of workers. Rats do not appear to develop any significant tolerance to this compound from nonlethal doses. However, it is extremely dangerous to humans, to common household pets, and to farm animals, and should only be used by experienced personnel. The rodent carcasses should be collected and destroyed since they remain poisonous for a long period of time to any animal that eats them. [Pg.307]

The metallic salts of trifluoromethanesulfonic acid can be prepared by reaction of the acid with the corresponding hydroxide or carbonate or by reaction of sulfonyl fluoride with the corresponding hydroxide. The salts are hydroscopic but can be dehydrated at 100°C under vacuum. The sodium salt has a melting point of 248°C and decomposes at 425°C. The lithium salt of trifluoromethanesulfonic acid [33454-82-9] CF SO Li, commonly called lithium triflate, is used as a battery electrolyte in primary lithium batteries because solutions of it exhibit high electrical conductivity, and because of the compound s low toxicity and excellent chemical stabiUty. It melts at 423°C and decomposes at 430°C. It is quite soluble in polar organic solvents and water. Table 2 shows the electrical conductivities of lithium triflate in comparison with other lithium electrolytes which are much more toxic (24). [Pg.315]

Sodium Nitrate and Sodium Nitrite. Nitrates and nitrites ate used in meat-curing processes to prevent the growth of bacteria that cause botulism. Nitrates have been shown to form low, but possibly toxic, levels of nitrosamines in certain cured meats. For this reason, the safety of these products has been questioned, and use is limited (80). [Pg.443]

The most commonly used Hquid metal is sodium—potassium eutectic. Sodium, potassium, bismuth, lithium, and other sodium—potassium alloys also are used. Mercury, lead, and lead—bismuth eutectic have also been used however, these are all highly toxic and appHcation has thus been restricted. [Pg.505]

The importance of hydrolysis potential, ie, whether moisture or water is present, is illustrated by the following example. In the normal dermal toxicity test, namely dry product on dry animal skin, sodium borohydride was found to be nontoxic under the classification of the Federal Hazardous Substances Act. Furthermore, it was not a skin sensitizer. But on moist skin, severe irritation and bums resulted. [Pg.306]

Although there is Httle toxicity information pubHshed on hydrides, a threshold limit value (TLV) for lithium hydride in air of 25 fig/has been established (52). More extensive data are available (53) for sodium borohydride in the powder and solution forms. The acute oral LD q of NaBH is 50-100 mg/kg for NaBH and 50-1000 mg/kg for the solution. The acute dermal LD q (on dry skin) is 4-8 g/kg for NaBH and 100-500 mg/kg for the solution. The reaction or decomposition by-product sodium metaborate is slightly toxic orally (LD q is 2000-4000 mg/kg) and nontoxic dermally. [Pg.306]

Several antimicrobials have been banned or severely restricted by the EPA based on documented or suspected toxicity or environmental problems. Others have been discontinued in the face of testing costs required by the EPA reregistration program mandated by the Pederal Insecticide, Pungicide, and Rodenticide Act (PIPRA) of 1988 (10). Some of the significant products that have become obsolete are 2,4,5-trichlorophenol/P3 -5 3 -47, sodium... [Pg.93]


See other pages where Sodium, toxicity is mentioned: [Pg.11]    [Pg.83]    [Pg.84]    [Pg.968]    [Pg.11]    [Pg.83]    [Pg.84]    [Pg.968]    [Pg.68]    [Pg.95]    [Pg.141]    [Pg.351]    [Pg.723]    [Pg.566]    [Pg.918]    [Pg.935]    [Pg.998]    [Pg.129]    [Pg.246]    [Pg.445]    [Pg.10]    [Pg.18]    [Pg.150]    [Pg.350]    [Pg.307]    [Pg.457]    [Pg.172]    [Pg.304]    [Pg.516]    [Pg.517]    [Pg.270]    [Pg.384]    [Pg.256]    [Pg.114]   
See also in sourсe #XX -- [ Pg.226 ]




SEARCH



© 2024 chempedia.info