Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium description

A suspension of 0.40 mol of sodium amide in 300 ml of liquid ammonia was prepared as described in Chapter II, Exp. 11. To the suspension was added with swirling a mixture of 0.25 mol of CHgCeC-S-Ph (see Chapter IV, Exp. 14) and 40 ml of THE in about 2 min (note 1). Swirling was continued after the addition. Three minutes later (note 1) the stopper with glass tube was placed on the flask. The brown solution was forced through the glass tube and the plastic tube, connected to it under 400 g of finely crushed ice, which was contained in a 3-1 conical flask (see Chapter I, Fig. 3, and accompanying description of this operation). The flask was placed for... [Pg.110]

Description of Method. Salt substitutes, which are used in place of table salt for individuals on a low-sodium diet, contain KCI. Depending on the brand, fumaric acid, calcium hydrogen phosphate, or potassium tartrate also may be present. Typically, the concentration of sodium in a salt substitute is about 100 ppm. The concentration of sodium is easily determined by flame atomic emission. Because it is difficult to match the matrix of the standards to that of the sample, the analysis is accomplished by the method of standard additions. [Pg.439]

Description of Method. The water-soluble vitamins Bi (thiamine hydrochloride), B2 (riboflavin), B3 (niacinamide), and Be (pyridoxine hydrochloride) may be determined by CZE using a pH 9 sodium tetraborate/sodlum dIhydrogen phosphate buffer or by MEKC using the same buffer with the addition of sodium dodecyl-sulfate. Detection Is by UV absorption at 200 nm. An Internal standard of o-ethoxybenzamide Is used to standardize the method. [Pg.607]

Silicates in Solutions. The distribution of sdicate species in aqueous sodium sdicate solutions has long been of interest because of the wide variations in properties that these solutions exhibit with different moduli (23—25). Early work led to a dual-nature description of sdicates as solutions composed of hydroxide ions, sodium ions, coUoidal sdicic acid, and so-called crystaHoidal sdica (26). CrystaHoidal sdica was assumed to be analogous to the simple species then thought to be the components of crystalline sdicate compounds. These include charged aggregates of unit sdicate stmctures and sdica (ionic micelles), and weU-defined sdicate anions. [Pg.5]

Commercial Item Description (CID), Sodium Chloride, Technical (Water) Conditioning Grade A-A-694 General Services Administration... [Pg.183]

The most important hazard ia the manufacturiag of xanthates is the use of carbon disulfide (qv) because of its low flash poiat, ignition temperature, and its toxicity. A report on the manufacture of sodium ethyl xanthate at Keimecott Nevada Mines Division discusses the various safety problems and the design of a faciUty (81). A plant layout and a description of the reagent preparations are also given. [Pg.366]

Solution Process. With the exception of fibrous triacetate, practically all cellulose acetate is manufactured by a solution process using sulfuric acid catalyst with acetic anhydride in an acetic acid solvent. An excellent description of this process is given (85). In the process (Fig. 8), cellulose (ca 400 kg) is treated with ca 1200 kg acetic anhydride in 1600 kg acetic acid solvent and 28—40 kg sulfuric acid (7—10% based on cellulose) as catalyst. During the exothermic reaction, the temperature is controlled at 40—45°C to minimize cellulose degradation. After the reaction solution becomes clear and fiber-free and the desired viscosity has been achieved, sufficient aqueous acetic acid (60—70% acid) is added to destroy the excess anhydride and provide 10—15% free water for hydrolysis. At this point, the sulfuric acid catalyst may be partially neutralized with calcium, magnesium, or sodium salts for better control of product molecular weight. [Pg.254]

In many patent orHterature descriptions, a stabilized chlorine dioxide solution or component is used or described. These stabilized chlorine dioxide solutions are in actuaHty a near neutral pH solution of sodium chlorite that may contain buffer salts or additives to obtain chlorite stabiHty in the pH 6—10 range. The uv spectra of these solutions is identical to that of sodium chlorite. These pH adjusted chlorite solutions can produce the active chlorine dioxide disinfectant from a number of possible organic or inorganic chemical and microbiological reactions that react, acidify, or catalyze the chlorite ion. [Pg.489]

The example shown in Eq. (6.5) was conducted using 0.5 mole of bis-(2-mer-captoethyl) ether and 0.5 mole of 1,8-dichloro-3,6-dioxaoctane. The base was sodium hydroxide (1 mole) and between 900 and 2,000 mL of ethanol were used. The exact quantity of ethanol used in this synthesis is not clear from the experimental description. The reaction time was somewhere between 7 and 14 hours (again, unspecified), after which time the product (6) was isolated by vacuum distillation, as a viscous oil, in 27% yield. Similar approaches were utilized by this group for the synthesis of other analogs ". ... [Pg.269]

A summary of typical experimental conditions used with TSK-PW columns for nonionic polymers is described in Table 20.3. A common mobile phase is an aqueous solution of 0.05 N sodium nitrate. A salt solution of sodium nitrate is a good choice because it is not as corrosive as a solution of sodium chloride. For the descriptions and examples that follow, a bank of either five or six TSK-PW columns in series (G1000-G5000 or G1000-G6000) was used for the aqueous SEC work. These configurations allow for molecular mass characterization from less than 1,000 Da to 1,000,000 Da or greater. [Pg.562]

The following description is taken from U.S. Patent 3,116,203. A stirred solution of 75 g of 2-amino.2 -nitrobenzophenone in 700 ml of hot concentrated hydrochloric acid was cooled to 0°C and a solution of 21.5 g of sodium nitrite in 50 ml of water was added in the course of 3 hours. The temperature of the suspension was kept at 2° to 7°C during the addition. The resulting clear solution was poured into a stirred solution of 37 g of cuprous chloride in 350 ml of hydrochloric acid 1 1. The solid which had formed after a few minutes was filtered off, washed with water and recrystallized from ethanol. Crystals of 2-chloro-2 -nitrobenzophenone melting at 76° to 79°C were obtained. [Pg.371]

The following description is taken from U.S. Patent 2,712,012 2.3 parts of clean sodium metal is dissolved in 50 parts of anhydrous methyl alcohol. 11.4 parts of 3-sulfanilamido-6-chloropyridazine is added and the mixture heated in a sealed tube 13 hours at 130° to 140°C. After the tube has cooled it is opened and the reaction mixture filtered, acidified with dilute acetic acid, then evaporated to dryness on the steam bath. The residue is dissolved in 80 parts of 5% sodium hydroxide, chilled and acidified with dilute acetic acid. The crude product is filtered and then recrystallized from water to give 3-sulfanilamido-6-methoxypyridazine of melting point 182° to 183°C. [Pg.1417]

The scientific and technical corrosion literature has descriptions and lists of numerous chemical compounds that exhibit inhibiting properties. Of these only a very few are ever actually used in practical systems. This is partly due to the fact that in practice the desirable properties of an inhibitor usually extend beyond those simply relating to metal protection. Thus cost, toxicity, availability, etc. are of considerable importance as well as other more technical aspects (see Principles). Also, as in many other fields of scientific development, there is often a considerable time lag between laboratory development and practical application. In the field of inhibition the most notable example of this gap between discovery and application is the case of sodium nitrite. Originally reported in 1899 to have inhibitive properties, it remained effectively unnoticed until the 1940s it is now one of the most widely employed inhibitors. [Pg.778]

The continuous sintering is mainly a zone sintering process in which the electrolyte tube is passed rapidly through the hot zone at about 1700 °C. This hot zone is small (about 60 mm) in zone sintering, no encapsulation devices are employed. The sodium oxide vapor pressure in the furnace is apparently controlled by the tubes themselves. Due to the short residence time in the hot zone, the problem of soda loss on evaporation can be circumvented. A detailed description of / "-alumina sintering is given by Duncan et al. [22]. [Pg.580]

Description White powder or crystals. Sodium benzoate converts to benzoic acid in acidic mixtures. Benzoic acid has good antimicrobial features but does not dissolve well in water, whereas sodium benzoate dissolves very well in water. ... [Pg.21]

Some formulas, such as the formula for table salt, are very simple. You don t need a picture, just a description of the two elements that make it up sodium and chlorine. The formula is ... [Pg.283]

Utilizing this description of silicate glass formation, we suggest models to explain the incorporation of 4+ and 6+ actinide ions in sodium disilicate glass. During cooldown,... [Pg.155]

The ionic model, the description of bonding in terms of ions, is particularly appropriate for describing binary compounds formed from a metallic element, especially an s-block metal, and a nonmetallic element. An ionic solid is an assembly of cations and anions stacked together in a regular array. In sodium chloride, sodium ions alternate with chloride ions, and large numbers of oppositely charged ions are lined up in all three dimensions (Fig. 2.1). Ionic solids are examples of crystalline... [Pg.181]

Thus we have Example 5 from Table 4.1. Equation 4 gives a better description of the overall reaction, but equation 5 highlights the essential chemical process, and can also stand for the parallel reactions where sodium chloride is replaced by potassium chloride, or at r other soluble chloride. The chemistiy student is expected to appreciate how both equations 4 and 5 can represent the same chemical processes. [Pg.95]

The luminescence of macrocrystalline cadmium and zinc sulfides has been studied very thoroughly The colloidal solutions of these compounds also fluoresce, the intensity and wavelengths of emission depending on how the colloids were prepared. We will divide the description of the fluorescence phenomena into two parts. In this section we will discuss the fluorescence of larger colloidal particles, i.e. of CdS particles which are yellow as the macrocrystalline material, and of ZnS particles whose absorption spectrum also resembles that of the macrocrystals. These colloids are obtained by precipitating CdS or ZnS in the presence of the silicon dioxide stabilizer mentioned in Sect. 3.2, or in the presence of 10 M sodium polyphosphate , or surfactants such as sodium dodecyl sulfate and cetyldimethylbenzyl-ammonium... [Pg.129]

Section 3.2 begins with pfCj definitions and a brief description of the state-of-the-art pfCj measurement methods, stressing the needed accuracy, especially with molecules which possess very low aqueous solubility. In a prachcal way, the ioniza-hon constant is treated as a property of the molecule, usually defined at 25 °C in a nonbuffered medium of 0.15 M potassium (or sodium) chloride aqueous... [Pg.57]


See other pages where Sodium description is mentioned: [Pg.31]    [Pg.31]    [Pg.979]    [Pg.6]    [Pg.455]    [Pg.201]    [Pg.54]    [Pg.147]    [Pg.183]    [Pg.40]    [Pg.33]    [Pg.979]    [Pg.408]    [Pg.177]    [Pg.1180]    [Pg.778]    [Pg.789]    [Pg.94]    [Pg.24]    [Pg.79]    [Pg.210]    [Pg.157]    [Pg.14]    [Pg.208]    [Pg.75]    [Pg.214]    [Pg.38]    [Pg.413]    [Pg.80]   
See also in sourсe #XX -- [ Pg.18 ]




SEARCH



© 2024 chempedia.info