Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Small solar cells

Commercialization of amorphous silicon solar cells started in 1980 when Sanyo introduced calculators powered only by small solar-cell panels (total area 5 cm2). Shortly thereafter, Fuji Electric also started producing a-Si H solar cells for calculators. As of 1983, a-Si H photovoltaic devices are produced for several other applications such as photodetectors, power supplies for watches, and NiCd battery chargers. Before the end of 1984 one may see a-Si H solar panels used in larger-scale applications such as irrigation and remote electrification. [Pg.8]

To clarify the impact of sub-GBs on solar cell performance, in particular, the shunting effect, Kutsukake et al. performed EL imaging on a small solar cell sample, in which the distribution of sub-GBs was specified by using X-ray... [Pg.89]

Small-area thin-film CdTe solar cells have been fabricated with sunlight-to-electricity conversion efficiencies near 16%, comparable to crystalline siUcon solar cells in large-scale manufacturing. Large-area monolithic integrated CdTe modules have been fabricated with efficiencies of ca 10%, comparable to crystalline siUcon modules commercially available. [Pg.472]

Perhaps the most familiar example in the specialty items category is the consumer electronics market which consists primarily of solar-powered calculators and watches. Although volumes are large in terms of units sold, the revenues are relatively small. Further, the competition is fierce for any photovoltaics manufacturer who seeks to sell commodity solar cells to the consumer goods producer. [Pg.474]

Because of the high functional values that polyimides can provide, a small-scale custom synthesis by users or toU producers is often economically viable despite high cost, especially for aerospace and microelectronic appHcations. For the majority of iudustrial appHcations, the yellow color generally associated with polyimides is quite acceptable. However, transparency or low absorbance is an essential requirement iu some appHcations such as multilayer thermal iusulation blankets for satellites and protective coatings for solar cells and other space components (93). For iutedayer dielectric appHcations iu semiconductor devices, polyimides having low and controlled thermal expansion coefficients are required to match those of substrate materials such as metals, ceramics, and semiconductors usediu those devices (94). [Pg.405]

Yet another alternative is the thin-film solar cell. This cannot use silicon, because the transmission of solar radiation through silicon is high enough to require relatively thick silicon layers. One current favourite is the Cu(Ga, InjSci thin-film solar cell, with an efficiency up to 17% in small experimental cells. This material has a very high light absorption and the total thickness of the active layer (on a glass substrate) is only 2 pm. [Pg.270]

There is a need for small compressors to be driven from low-voltage d.c. supplies. Typical cases are batteries on small boats and mobile homes, where these do not have a mains voltage alternator. It is also possible to obtain such a supply from a bank of solar cells. This requirement has been met in the past by diaphragm compressors driven by a crank and piston rod from a d.c. motor, or by vibrating solenoids. The advent of suitable electronic devices has made it possible to obtain the mains voltage a.c. supply for hermetic compressors from low-voltage d.c. [Pg.45]

The aim of this chapter is to give a state-of-the-art report on the plastic solar cells based on conjugated polymers. Results from other organic solar cells like pristine fullerene cells [7, 8], dye-sensitized liquid electrolyte [9], or solid state polymer electrolyte cells [10], pure dye cells [11, 12], or small molecule cells [13], mostly based on heterojunctions between phthaocyanines and perylenes [14], will not be discussed. Extensive literature exists on the fabrication of solar cells based on small molecular dyes with donor-acceptor systems (see for example [2, 3] and references therein). [Pg.271]

Figure 15-29. Chemical structures of the conjugated polymers used in the device and the device structure of the laminated solar cell. For the top half of the device, A1 or Ca was evaporated on glass substrates, and the acceptor material MEH-CN-PPV (and a small amount of POPT, usually 5%) was spin coaled. The half with the POPT (and a small amount of MEH-CN-PPV, usually 5%) was spin coaled on 1TO substrates and heated to 200"C under vacuum belore the device was laminated together by applying a light pressure. Figure 15-29. Chemical structures of the conjugated polymers used in the device and the device structure of the laminated solar cell. For the top half of the device, A1 or Ca was evaporated on glass substrates, and the acceptor material MEH-CN-PPV (and a small amount of POPT, usually 5%) was spin coaled. The half with the POPT (and a small amount of MEH-CN-PPV, usually 5%) was spin coaled on 1TO substrates and heated to 200"C under vacuum belore the device was laminated together by applying a light pressure.
Anodization generally results in the formation of films with limited thickness, uncertain composition, defects, and small crystallite size. Thus, the barrier nature of the n-type semiconducting CdS film obtained in the previous manner makes it too thin to form the basis of Cu2S/CdS or CdTe/CdS solar cells by the normal dipping process. Heterojunction cells of low efficiency have, however, been made by anodization followed by vacuum deposition of the added layer (CU2S). [Pg.91]

Hyun et al. [345] prepared PbS Q-dots in a suspension and tethered them to Ti02 nanoparticles with a bifunctional thiol-carboxyl linker molecule. Strong size dependence due to quantum confinement was inferred from cyclic voltammetry measurements, for the electron affinity and ionization potential of the attached Q-dots. On the basis of the measured energy levels, the authors claimed that pho-toexcited electrons should transfer efficiently from PbS into T1O2 only for dot diameters below 4.3 nm. Continuous-wave fluorescence spectra and fluorescence transients of the PbS/Ti02 assembly were consistent with electron transfer from small Q-dots. The measured charge transfer time was surprisingly slow ( 100 ns). Implications of this fact for future photovoltaics were discussed, while initial results from as-fabricated sensitized solar cells were presented. [Pg.290]

Schropp and Zeman [11] have classified current production systems for amorphous silicon solar cells. They argue that cost-effective production of solar cells on a large scale requires that the product of the deposition time needed per square meter and the depreciation and maintenance costs of the system be small. Low... [Pg.19]

Illumination of solar cells causes a reduction of efficiency and fill factor, as a result of light-induced creation of defects (Staebler-Wronski effect. Section 1.1.2.5). This reduction is halted after several hundred hours of illumination. The reduction is correlated with solar cell thickness. A large intrinsic layer thickness leads to a large reduction of efficiency and fill factor compared to a small intrinsic layer thickness. The solar cell properties can be completely recovered by annealing at about 150°C. The open circuit voltage and short circuit current decrease only slightly. [Pg.175]

The silver white, shiny, metal-like semiconductor is considered a semimetal. The atomic weight is greater than that of the following neighbor (iodine), because tellurium isotopes are neutron-rich (compare Ar/K). Its main use is in alloys, as the addition of small amounts considerably improves properties such as hardness and corrosion resistance. New applications of tellurium include optoelectronics (lasers), electrical resistors, thermoelectric elements (a current gives rise to a temperature gradient), photocopier drums, infrared cameras, and solar cells. Tellurium accelerates the vulcanization of rubber. [Pg.139]

Apart from recapture of the injected electrons by the oxidized dye, there are additional loss channels in dye-sensitized solar cells, which involve reduction of triiodide ions in the electrolyte, resulting in dark currents. The Ti02 layer is an interconnected network of nanoparticles with a porous structure. The functionalized dyes penetrate through the porous network and adsorb over Ti02 the surface. However, if the pore size is too small for the dye to penetrate, that part of the surface may still be exposed to the redox mediator whose size is smaller than the dye. Under these circumstances, the redox mediator can collect the injected electron from the Ti02 conduction band, resulting in a dark current (Equation (6)), which can be measured from intensity-modulated experiments and the dark current of the photovoltaic cell. Such dark currents reduce the maximum cell voltage obtainable, and thereby the total efficiency. [Pg.747]

Electrical cells based on semiconductors that produce electricity from sunlight and deliver the electrical energy to an external load are known as photovoltaic cells. At present most commercial solar cells consist of silicon doped with small levels of controlled impurity elements, which increase the conductivity because either the CB is partly filled with electrons (n-type doping) or the VB is partly filled with holes (p-type doping). The electrons have, on average, a potential energy known as the Fermi level, which is just below that of the CB in n-type semiconductors and just above that of the VB in p-type semiconductors (Figure 11.2). [Pg.199]


See other pages where Small solar cells is mentioned: [Pg.468]    [Pg.468]    [Pg.2890]    [Pg.467]    [Pg.470]    [Pg.470]    [Pg.471]    [Pg.473]    [Pg.528]    [Pg.258]    [Pg.413]    [Pg.1060]    [Pg.271]    [Pg.599]    [Pg.600]    [Pg.602]    [Pg.398]    [Pg.34]    [Pg.176]    [Pg.239]    [Pg.262]    [Pg.292]    [Pg.15]    [Pg.252]    [Pg.326]    [Pg.746]    [Pg.749]    [Pg.274]    [Pg.59]    [Pg.103]    [Pg.207]    [Pg.175]    [Pg.348]    [Pg.67]    [Pg.469]    [Pg.104]   
See also in sourсe #XX -- [ Pg.516 ]




SEARCH



Synthesis of Small Molecule Donors for High Efficiency Solution Processed Organic Solar Cells

© 2024 chempedia.info