Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Salinity viscosity

Volume of lentic water depends on rock dispersity and hydrophility, on their salinity, viscosity and external pressure. Their properties and composition can be noticeably different from properties and composition of gravity flowing water. Such water has density of up to 1.84 g cm high viscosity and freezing point of down to -78 °C. [Pg.143]

CMC/PAC sodium carboxy-methyl cellulose anionic 140 filtration control, viscosity builder sensitive to salinity, multivalent ions... [Pg.179]

The polymers exist in saline solution as tightly coiled chains and are readily adsorbed owing to relatively low solubiUty in hard water. Subsequent injection of soft, low salinity water uncoils the adsorbed polymer chains increasing water viscosity and reducing rock permeabiUty. This technology could also be used to reduce the permeabiUty of thief 2ones adjacent to injection wells. However, mechanical isolation of these 2ones may be necessary for cost-effective treatments. [Pg.191]

The substantial decrease of polyacrylamide solution viscosity in mildly saline waters can be uti1i2ed to increase injection rates. A quaternary ammonium salt polymer can be added to the polyacrylamide solution to function as a salt and reduce solution viscosity (144). If the cationic charge is in the polymer backbone and substantially shielded from the polyacrylamide by steric hindrance, formation of an insoluble interpolymer complex can be delayed long enough to complete polyacrylamide injection. Upon contacting formation surfaces, the quaternary ammonium salt polymer is adsorbed reducing... [Pg.192]

Gum-Saline. Gum is a galactoso—gluconic acid having molecular weight of approximately 1500. First used (16) in kidney perfusion experiments, gum—saline enjoyed great popularity as a plasma expander starting from the end of World War I. The aggregation state of gum depends on concentration, pH, salts, and temperature, and its coUoid oncotic pressure and viscosity are quite variable. Conditions were identified (17) under which the viscosity would be the same as that of whole blood. [Pg.160]

The effectiveness of a number of crude oil dispersants, measured using a variety of evaluation procedures, indicates that temperature effects result from changing viscosity, dispersants are most effective at a salinity of approximately 40 ppt (parts per thousand), and concentration of dispersant is critical to effectiveness. The mixing time has little effect on performance, and a calibration procedure for laboratory dispersant effectiveness must include contact with water in a manner analogous to the extraction procedure otherwise, effectiveness may be inflated [587]. Compensation for the coloration produced by the dispersant alone is important only for some dispersants. [Pg.304]

Each oil-dispersant combination shows a unique threshold or onset of dispersion [589]. A statistic analysis showed that the principal factors involved are the oil composition, dispersant formulation, sea surface turbulence, and dispersant quantity [588]. The composition of the oil is very important. The effectiveness of the dispersant formulation correlates strongly with the amount of the saturate components in the oil. The other components of the oil (i.e., asphaltenes, resins, or polar substances and aromatic fractions) show a negative correlation with the dispersant effectiveness. The viscosity of the oil is determined by the composition of the oil. Therefore viscosity and composition are responsible for the effectiveness of a dispersant. The dispersant composition is significant and interacts with the oil composition. Sea turbulence strongly affects dispersant effectiveness. The effectiveness rises with increasing turbulence to a maximal value. The effectiveness for commercial dispersants is a Gaussian distribution around a certain salinity value. [Pg.305]

Dornase alfa (Pulmozyme ) is a recombinant human (rh) DNase that selectively cleaves extracellular deoxyribonucleic acid (DNA). This DNA is released during neutrophil degradation and contributes to the high viscosity of CF sputum. Nebulization of dornase alfa 2.5 mg once or twice daily improves daily pulmonary symptoms and function, reduces pulmonary exacerbations, and improves quality of life.16 N-acetylcysteine and hypertonic saline are other mucolytic agents that are occasionally used however, they are not preferred agents due to a greater incidence of bronchospasm and unpleasant odor and taste.5... [Pg.250]

In contrast, parenteral suspensions have relatively low solids contents, usually between 0.5 and 5%, with the exception of insoluble forms of penicillin in which concentrations of the antibiotic may exceed 30%. These sterile preparations are designed for intramuscular, intradermal, intralesional, intraarticular, or subcutaneous injection. Syringeability is an important factor to be taken into consideration with injectable dosage forms. The viscosity of a parenteral suspension should be sufficiently low to facilitate injection. Common suspending vehicles include preserved isotonic saline solution or a parenterally acceptable vegetable oil. Ophthalmic and optic suspensions that are instilled into the eye/ear must also be prepared in a sterile manner. The vehicles are essentially isotonic and aqueous in composition. The reader should refer to Chapter 12 for further discussion on parenteral products. [Pg.264]

Compared to partially hydrolyzed polyacrylamide, xanthan gum is more expensive, more susceptible to bacterial degradation, and less stable at elevated temperatures (1). However, xanthan gum is more soluble in saline waters, particularly those containing divalent metal ions generally adsorbs less on rock surfaces and is substantially more resistant to shear degradation (1,34). The extensional viscosity of the semi-rigid xanthan molecule is less that that of the flexible polyacrylamide (263). [Pg.35]

When dissolved in more saline waters, xanthan gum produces a higher apparent viscosity than the same concentration of polyacrylamide (292). Prehydration of xanthan in fresh water followed by dilution in the saline injection water has been reported to provide higher viscosity than direct polymer dissolution in the same injection water. Optical rotation and intrinsic viscosity dependence on temperature indicate xanthan exists in a more ordered conformation in brine than in fresh water (293). [Pg.35]

The usefulness of xanthan in polymer flooding for enhanced oil recovery is based on its ability to yield large increase in viscosity at low polymer concentrations under high-temperature and high salinity conditions. This important property of xanthan is determined both by its molecular weight and by the conformation adopted in solution (1). [Pg.150]

Comparison of the limiting viscosity numbers determined in deionized water with those determined in 1 molar sodium nitrate shows a 20 per cent decrease in copolymer intrinsic viscosity in the saline solution. These results are consistent with previous studies using aqueous saline solutions as theta solvents for 2-propenamide polymers(47) Degree of hydrolysis controls the value of limiting viscosity number for the hydrolyzed copolymers in distilled water. [Pg.187]

In adsorption studies from saline environments it is necessary to prepare the water-soluble polymer and peptized montmorillonite in fresh water at high concentrations and to add each to a saline solution. Polyelectrolytes will frequently not "yield" the same viscosity as when they are dissolved in fresh water. Montmorillonite will flocculate in saline solutions. With fresh water mixing of components, reproducible results are obtained in the saline studies. After component mixing, agitation of the slurry is maintained with gentle stirring via... [Pg.96]

Figure 6 Intrinsic viscosity (dl/g) dependence on salinity (N, NaCl) of aqueous solutions. Open symbols, HEC M.S. = 2.0 closed symbols, HEC M.S. = 4.3. Figure 6 Intrinsic viscosity (dl/g) dependence on salinity (N, NaCl) of aqueous solutions. Open symbols, HEC M.S. = 2.0 closed symbols, HEC M.S. = 4.3.
Polymer solutions were prepared by dispersing the polymer powder in a saline solution prepared with distilled deionized water. Following complete dispersion in the vortex of the fluid the samples were agitated under mild conditions (< 100 RPM) until the solution was homogeneous. For some solutions the dissolution was so rapid that the agitation step could be eliminated. The polymer viscosities were then measured using a Ubbelohde viscometer. The pH of the polymer solutions was adjusted using dilute acetic acid and sodium hydroxide. Some polymers were supplied as liquids and were subsequently diluted with distilled deionized water to the appropriate concentration. [Pg.11]

Nasal decongestant sprays such as phenylephrine and oxymetazoline that reduce inflammation by vasoconstriction are often used in sinusitis. Use should be limited to the recommended duration of the product to prevent rebound congestion. Oral decongestants may also aid in nasal or sinus patency. To reduce mucociliary function, irrigation of the nasal cavity with saline and steam inhalation may be used to increase mucosal moisture, and mucolytics (e.g., guaifenesin) maybe used to decrease the viscosity of nasal secretions. Antihistamines should not be used for acute bacterial sinusitis in view of their anticholinergic effects that can dry mucosa and disturb clearance of mucosal secretions. [Pg.499]


See other pages where Salinity viscosity is mentioned: [Pg.174]    [Pg.189]    [Pg.192]    [Pg.192]    [Pg.192]    [Pg.192]    [Pg.193]    [Pg.1045]    [Pg.1569]    [Pg.1302]    [Pg.386]    [Pg.199]    [Pg.39]    [Pg.202]    [Pg.235]    [Pg.36]    [Pg.37]    [Pg.116]    [Pg.125]    [Pg.129]    [Pg.240]    [Pg.65]    [Pg.100]    [Pg.102]    [Pg.102]    [Pg.103]    [Pg.107]    [Pg.145]    [Pg.96]   
See also in sourсe #XX -- [ Pg.130 ]




SEARCH



Polyacrylamide solution viscosity, saline

Polyacrylamide solution viscosity, saline waters

Saline

Salinity

Salinity viscosity affected

Salinity, saline

Salinization

Viscosity salinity effects

© 2024 chempedia.info