Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rocks dispersion

Volume of lentic water depends on rock dispersity and hydrophility, on their salinity, viscosity and external pressure. Their properties and composition can be noticeably different from properties and composition of gravity flowing water. Such water has density of up to 1.84 g cm high viscosity and freezing point of down to -78 °C. [Pg.143]

In contrast to the sulfide ores, the lateritic ores were formed over long periods of time as a result of weathering of exposed nickel-containing rocks. The lateritic weathering process resulted in nickel solutions that were redeposited elsewhere in the form of oxides or siUcates. One type of laterite is nickeliferous limonitic iron laterite (Ee, Ni)O(OH) which consists primarily of hydrated iron oxide in which the nickel is dispersed in soHd solution. [Pg.2]

Rejects and Sludge Handling. Sludge from water clarification contains water, inks and soHd pigments, dispersed adhesive particles, small plastic particles or wax, short cellulose fibers, paper filler and coating particles, and large soHd materials, eg, rocks, dirt, wire, ceramics, etc. [Pg.9]

Spill Anatomy and Remediation. Contrary to past arguments that leaks or spills from aboveground tanks would stay near the surface, they go straight down into the aquifer and spread out. Various obstacles, such as clay lenses, rock, or impermeable layers of sod, simply divert the downward path. Slow leaks from tank bottoms tend to form a narrow plume, whereas larger spills cover much wider areas. When the contaminant reaches groundwater, it tends to be dispersed in the direction of the groundwater current and movement. [Pg.321]

Liquid Dispersion Spray columns are used with slurries or when the reaction product is a solid. The absorption of SO9 by a hme slurry is an example. In the treatment of phosphate rock with sulfuric acid, offgases contain HF and SiF4. In a spray column with water, solid particles of fluorosilic acid are formed but do not harm the spray operation. The coefficient /cl in spray columns is about the same as in packed columns, but the spray interfacial area is much lower. Considerable backmixing of the gas also takes place, which helps to make the spray volumetri-caUy inefficient. Deentrainment at the outlet usually is needed. [Pg.2115]

Synthetic cryolite solved the supply problem, but synthetic cryolite requires fluorine which is actually more abundant in the Earth s crust than chlorine, but dispersed in small concentrations in rocks. Until the 1960s, fluorspar (CaFj) a mineral long known and used as a flux in various metallurgical operations was the source. A source is phosphate rock that contains fluorine i.s 3% quantity,... [Pg.267]

Uranium, too, is widely distributed and, since it probably crystallized late in the formation of igneous rocks, tends to be scattered in the faults of older rocks. Some concentration by leaching and subsequent re-precipitation has produced a large number of oxide minerals of which the most important are pitchblende or uraninite, U3O8, and camotite, K2(U02)2(V04)2.3H20. However, even these are usually dispersed so that typical ores contain only about 0.1% U, and many of the more readily exploited deposits are nearing exhaustion. The principal sources are Canada, Africa and countries of the former USSR. [Pg.1255]

The assumptions behind this calculated example are a considerable oversimplification of the real migration behavior. Effects such as diffusion into the rock matrix, dilution with inflowing water, dispersion of the migration front, channeling of the host... [Pg.291]

The analysis of geochemical liquids such as crude oils, hydrothermal bitumens, extracts of coals, and host rocks containing dispersed organic matter or pyrolysates... [Pg.369]

While drilling low-pressure reservoirs with nonconventional methods, it is conunon to use low-density dispersed systems, such as foam, to achieve underbalanced conditions. To choose an adequate foam formulation, not only the reservoir characteristics but also the foam properties need to be taken into account. Parameters such as stability of foam and interactions between rock-fluid and drilling fluid-formation fluid are among the properties to evaluate while designing the drilling fluid [13]. [Pg.10]

Argillaceous formations are very reactive in the presence of water. Such formations can be stabilized by bringing them in contact with a polymer solution with hydrophilic and hydrophobic links [101-104]. The hydrophilic portion consists of polyoxyethylene, with hydrophobic end groups based on isocyanates. The polymer is capable of inhibiting the swelling or dispersion of the argillaceous rock resulting from its adsorptive and hydrophobic capacities. [Pg.63]

In buffered surfactant-enhanced alkaline flooding, it was found that the minimum in interfacial tension and the region of spontaneous emulsification correspond to a particular pH range, so by buffering the aqueous pH against changes in alkali concentration, a low interfacial tension can be maintained when the amount of alkali decreases because of acids, rock consumption, and dispersion [1826]. [Pg.207]

The presence of the additive results in the formation of a homogeneous structure of the plugging rock, with an improved uniformity of the phase composition of the system and a more compact distribution of the dispersed particles. An increased strength of the cement rock is also obtained. [Pg.285]

In oil and gas well cementing operations, polyethyleneimine phosphonate-derivative dispersants enhance the flow behavior of the cement slurry [422]. The slurry can be pumped in turbulent flow, thereby forming a bond between the well casing and the rock formation. [Pg.309]

Examples of using reference samples for calibration can be found in several chapters of the uses Methods for Geochemical Analysis (Baedecker 1987). Solid reference sample powders are used in cahbrating the dc arc emission, energy-dispersive X-ray and instrumental neutron activation analyses described, while acid-dissolved rock reference samples are used for IGP emission analyses and fused reference samples are used for wavelength-dispersive X-ray analyses. [Pg.224]

Figure 23. Measured ( °Th/ Th) ratios in basalts from Piton de la Fournaise (Reunion Island) as a function of their eraption ages deduced from mineral isochrons. These ratios decrease with increasing emption ages as a result of post-eraptive radioactive decay. The curve shows the theoretical evolution by radioactive decay for a rock with a Th/U ratio of 3.95 and a ( °Th/ Th) ratio of 0.93, similar to the values measured in presently erapted lavas. An approximate age can thus be obtained from the measured ( °Th/ Th) ratio of an old sample. Part of the dispersion around the theoretical curve are due to small source heterogeneities (slightly variable ( °Th/ rh) and Th/U ratios), also evidenced by Sr/ Sr ratios (Condomines et al. 1988, and unpublished results). Figure 23. Measured ( °Th/ Th) ratios in basalts from Piton de la Fournaise (Reunion Island) as a function of their eraption ages deduced from mineral isochrons. These ratios decrease with increasing emption ages as a result of post-eraptive radioactive decay. The curve shows the theoretical evolution by radioactive decay for a rock with a Th/U ratio of 3.95 and a ( °Th/ Th) ratio of 0.93, similar to the values measured in presently erapted lavas. An approximate age can thus be obtained from the measured ( °Th/ Th) ratio of an old sample. Part of the dispersion around the theoretical curve are due to small source heterogeneities (slightly variable ( °Th/ rh) and Th/U ratios), also evidenced by Sr/ Sr ratios (Condomines et al. 1988, and unpublished results).
As indicated by Puig et al. (35). surfactant retention and attendant pressure buildup in the rock can be greatly reduced if the surfactant dispersion is converted into the liquid crystalline state. Unilameller vesicles are preferred in the field work rather than the multilamellar... [Pg.401]

The slopes of the peaks in the dynamic adsorption experiment is influenced by dispersion. The 1% acidified brine and the surfactant (dissolved in that brine) are miscible. Use of a core sample that is much longer than its diameter is intended to minimize the relative length of the transition zone produced by dispersion because excessive dispersion would make it more difficult to measure peak parameters accurately. Also, the underlying assumption of a simple theory is that adsorption occurs instantly on contact with the rock. The fraction that is classified as "permanent" in the above calculation depends on the flow rate of the experiment. It is the fraction that is not desorbed in the time available. The rest of the adsorption occurs reversibly and equilibrium is effectively maintained with the surfactant in the solution which is in contact with the pore walls. The inlet flow rate is the same as the outlet rate, since the brine and the surfactant are incompressible. Therefore, it can be clearly seen that the dynamic adsorption depends on the concentration, the flow rate, and the rock. The two parameters... [Pg.514]

Dispersivity is a property that depends on the nature of the sediment or rock in question, as well as the scale on which dispersion is observed. There is no typical value a dispersivity of 1 cm might be observed in a laboratory experiment, whereas a value of 100 m (10 000 cm) might be found to apply in a field study. Dispersion is generally more rapid along the direction of flow than across it, so oil > t. Typical values of the diffusion coefficient D in porous media are in the range 10-7 to 10-6 cm2 s-1. [Pg.290]

The dispersivity of natural sediments and rocks, as we have noted, is a property notable for its tendency to scale strongly with the scale on which it is observed (e.g., Neuman, 1990). Dispersivities observed in field studies, for example, are almost invariably larger than those observed on a smaller scale of study in the... [Pg.290]


See other pages where Rocks dispersion is mentioned: [Pg.151]    [Pg.151]    [Pg.132]    [Pg.143]    [Pg.3]    [Pg.165]    [Pg.25]    [Pg.327]    [Pg.345]    [Pg.186]    [Pg.193]    [Pg.1781]    [Pg.234]    [Pg.917]    [Pg.705]    [Pg.795]    [Pg.583]    [Pg.170]    [Pg.297]    [Pg.83]    [Pg.143]    [Pg.308]    [Pg.150]    [Pg.328]    [Pg.42]    [Pg.156]    [Pg.157]    [Pg.160]    [Pg.503]    [Pg.26]    [Pg.400]    [Pg.289]   
See also in sourсe #XX -- [ Pg.856 ]




SEARCH



© 2024 chempedia.info