Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rubber types lubrication

The submitters used a Teflon paddle-type stirrer sealed with rubber tubing lubricated by glycerol and driven by a powerful motor. The checkers used a Trubore stirrer. [Pg.6]

Lubrication of the test pieces is now standard practice in order to eliminate one obvious source of variation. The more uniform flattening of the test piece also eases measurement of thickness after release from compression. However, there remain specifications in which set is determined in the absence of lubricants. It has also become common practice with general-purpose rubbers to measure compression. set after just one day at 70°C, which for sulfur-vulcanized elastomers can be a. sensitive measure of the state of cure. Higher test temperatures are specified for special-purpose and speciality synthetic rubbers, but the one-day test has remained popular, not least as a cla.ssification criterion and grade requirement in such specifications as ASTM D2000 and the British Standard series of material specifications for individual rubber types. Tests seldom last more than seven days, and recovery is usually confined to the standard. 30 minutes after release, during which time the test piece cools to standard laboratory temperature if taken from an oven. The short-term nature of the test and the absence of isothermal conditions during recovery has been questioned by Birley and other workers [43]. [Pg.297]

Ruororubbers and silicones are the best materials to make seals resistant to extreme temperature conditions. Viton, a fluororubber marketed by M/S Du Pont USA, can operate at 200°C in contact with oils and lubricants. Polysulfide rubbers have low compression set, but exhibit excellent fuel resistance. For improved compression set, it is admixed with relatively cheap conventional nitrile rubbers. The fluorine-containing rubbers, such as fluororubber, possess outstanding resistance to heat, fuels and hydraulic fluids coupled with extremely good aging characteristics. The reversible physical effects with respect to the ultimate tensile strength of this rubber vulcanizate is a noteworthy phenomenon since this is not associated with the deterioration of the rubber itself. Fluororubber is resistant to most fluids used in the aircraft industiy, such as synthetic, ester type lubricants, aromatic and aliphatic hydrocarbons, and water. [Pg.41]

Fig. 23(C) shows a reflux assembly with a stirrer fitted. The stirrer A is both held in position in the tube B and allowed to rotate freely by the lubricated rubber sleeve C, as described on p. 39, and is connected to a vertical motor above. The extent to which the stirrer dips into the liquid in the flask can readily be adjusted. The condenser (not shown) is fitted into D. This constitutes for many purposes the best type of stirrer. If desired, the rubber sleeve C can be replaced by a metal fitting E for a horizontal drive. The gas-inlet F is closed when not in use. Fig. 23(C) shows a reflux assembly with a stirrer fitted. The stirrer A is both held in position in the tube B and allowed to rotate freely by the lubricated rubber sleeve C, as described on p. 39, and is connected to a vertical motor above. The extent to which the stirrer dips into the liquid in the flask can readily be adjusted. The condenser (not shown) is fitted into D. This constitutes for many purposes the best type of stirrer. If desired, the rubber sleeve C can be replaced by a metal fitting E for a horizontal drive. The gas-inlet F is closed when not in use.
The excellent chemical resistance of Aflas has led to important applications in oilfields and, more recently, in the car industry in place of FKM rubbers because of the better resistance to new types of engine oils, transmission fluids, gear lubricants and engine coolants. [Pg.382]

Silicone rubber as a shaft seal and backing material has a number of special applications. It can be used over a temperature range of —60°C to 260°C (—76°F to 500°F) in air or suitable fluids. Its abrasion resistance is good with hard shafts having a 0.000254 mm RMS surface finish. Commercial grades of silicone rubber are compatible with most industrial chemicals up to 260°C (500°F). In lubricating oils, the limiting temperature is 120°C (250°F), but special types have been developed for use up to 200°C (392°F). [Pg.883]

Fig. A.5. An apparatus for the lsO-labclling of the CO2 produced in biolumines-cence reactions. The stopcocks A-E and the ground joint of reaction vessel are lubricated with high-vacuum grease, and the connections between the glass tubes are made with short pieces of thick-walled silicon rubber tubing. The stopcocks C and D are high-vacuum type, such as Ace Glass, Cat. No. 8197-04 and 8195-236, or Corning, Cat. No. 7473-3. Fig. A.5. An apparatus for the lsO-labclling of the CO2 produced in biolumines-cence reactions. The stopcocks A-E and the ground joint of reaction vessel are lubricated with high-vacuum grease, and the connections between the glass tubes are made with short pieces of thick-walled silicon rubber tubing. The stopcocks C and D are high-vacuum type, such as Ace Glass, Cat. No. 8197-04 and 8195-236, or Corning, Cat. No. 7473-3.
The investigations on boundary lubrication used to focus on the friction elements made of metallic materials, and of steel in particular. This is, of course, due to the fact that a great majority of machines are built from metal and steel, but it is also because the hydrocarbon-based oils have been proven to be an extraordinarily good lubricant for metal surfaces. Unfortunately, the conventional oils are not so effective to lubricate the components made of other materials, like ceramics, rubbers, silicon, etc., so that the study on new types of lubricants suitable for such materials has attracted great attention in recent years. [Pg.82]

Oils of the three types are offered in a range of viscosities and this will influence their processing character to some extent, although there is little evidence that it will have much influence on the ultimate compound physical properties, at least in natural rubber compounds. The small additions of oil to a compound help with filler dispersion by lubricating the polymer molecular chains and thus increasing their mobility. There will also be some wetting out of the filler particles which enables them to achieve earlier compatibility with the rubber and improve their distribution and dispersion speed. [Pg.153]

This generally depends on the type and amount of accelerator. The higher the accelerator the faster is the scorch. It can be made slow by the addition of retarders. Increasing softeners often slows down the onset of cure while at the same time improving internal lubrication in the compound. The higher the un-saturation in the rubber the faster is the scorch. [Pg.12]

A large propeller-type stirrer is satisfactory. The blades should be pitched to drive the liquid upwards, and the propeller should be located just below the surface of the liquid to provide splashing. The checkers used a glycerol-lubricated rubber-tube seal.1... [Pg.23]

The rotary-platform, double-head or Taber abrader, unlike those mentioned above, was not developed by the rubber industry but was intended for very general use. It is of the form (d) in Figure 11.4 but uses a pair of abrasive wheels. Although the degree of slip cannot be varied, the Taber is in other ways a very versatile apparatus. It uses a simple flat disc as the test piece which could, if necessary, be fabricated from more than one piece. The force on the test piece and the nature of the abradant are very readily varied and tests can be carried out in the presence of liquid or powder lubricants. When using the usual type of abrasive wheel, a refacing procedure is carried out before each material tested. [Pg.237]

ANTIOXIDANTS. Usually an organic compound added to various types of materials, such as rubber, natural fats and oils, food products, gasoline, and lubricating oils, for the purposes of retarding oxidation and associated deterioration, rancidity, gum formation, reduction in shelf life, etc. [Pg.139]

Hydrocarbon oxidation may also be considered a free radical chain-type reaction. At elevated temperatures, hydrocarbon free radicals (R) are formed which react with oxygen lo form peroxy radicals (R(X These, in turn, take up a hydrogen atom from the hydrocarbon to form a hydroperoxide (ROOH) and another hydrocarbon free radical. The cycle repeals itself with the addition of oxygen. The unstable hydroperoxides remaining are the major points for degradation and lead to rancidity and color development in oils, fats, and waxes decomposition and gum formation in gasolines sludging in lubricants and breakdown of plastics and rubber products. Antioxidants, such as amines and phenols, are often introduced into hydrocarbon systems in order lo prevent this free radical oxidation sequence. [Pg.680]

The performance of lubricants can be significantly improved by the use of additives, which can make up from ppm to 30%, (w/w) of the lubricant. Typical values of total additive content are in the order of 5%. Often different additives are combined to improve several properties. Choosing the right combination can have synergistic effects on the overall performance, but a wrong choice can render some of them inactive. An important issue with additives can be the compatibility of the additives with the solid surfaces or with polymer or rubber seals. In table 11.1 the most important types of additives are listed. The list also illustrates the main practical problems encountered when making lubricants. [Pg.241]

Benzene found in the environment is from both human activities and natural processes. Benzene was first discovered and isolated from coal tar in the 1800s. Today, benzene is made mostly from petroleum sources. Because of its wide use, benzene ranks in the top 20 in production volume for chemicals produced in the United States. Various industries use benzene to make other chemicals, such as styrene (for Styrofoam and other plastics), cumene (for various resins), and cyclohexane (for nylon and synthetic fibers). Benzene is also used for the manufacturing of some types of rubbers, lubricants, dyes, detergents, drugs, and pesticides. Natural sources of benzene, which include volcanoes and forest fires, also contribute to the presence of benzene in the environment. Benzene is also a part of crude oil and gasoline and cigarette smoke. For more information on the nature and uses of benzene, see Chapters 3 and 4. [Pg.15]


See other pages where Rubber types lubrication is mentioned: [Pg.198]    [Pg.384]    [Pg.939]    [Pg.210]    [Pg.84]    [Pg.1048]    [Pg.591]    [Pg.313]    [Pg.62]    [Pg.259]    [Pg.32]    [Pg.25]    [Pg.109]    [Pg.669]    [Pg.40]    [Pg.375]    [Pg.256]    [Pg.944]    [Pg.945]    [Pg.1242]    [Pg.550]    [Pg.180]    [Pg.77]    [Pg.67]    [Pg.86]    [Pg.77]    [Pg.47]    [Pg.18]    [Pg.32]    [Pg.28]    [Pg.204]    [Pg.762]    [Pg.39]   


SEARCH



Rubber types

© 2024 chempedia.info