Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Routine spectrometry

Forward recoil spectrometry (FRS) [33], also known as elastic recoil detection analysis (ERDA), is fiindamentally the same as RBS with the incident ion hitting the nucleus of one of the atoms in the sample in an elastic collision. In this case, however, the recoiling nucleus is detected, not the scattered incident ion. RBS and FRS are near-perfect complementary teclmiques, with RBS sensitive to high-Z elements, especially in the presence of low-Z elements. In contrast, FRS is sensitive to light elements and is used routinely in the detection of Ft at sensitivities not attainable with other techniques [M]- As the teclmique is also based on an incoming ion that is slowed down on its inward path and an outgoing nucleus that is slowed down in a similar fashion, depth infonuation is obtained for the elements detected. [Pg.1846]

When mass spectrometry was first used as a routine analytical tool, El was the only commercial ion source. As needs have increased, more ionization methods have appeared. Many different types of ionization source have been described, and several of these have been produced commercially. The present situation is such that there is now only a limited range of ion sources. For vacuum ion sources, El is still widely used, frequently in conjunction with Cl. For atmospheric pressure ion sources, the most frequently used are ES, APCI, MALDI (lasers), and plasma torches. [Pg.282]

The techniques described thus far cope well with samples up to 10 kDa. Molecular mass determinations on peptides can be used to identify modifications occurring after the protein has been assembled according to its DNA code (post-translation), to map a protein structure, or simply to confirm the composition of a peptide. For samples with molecular masses in excess of 10 kDa, the sensitivity of FAB is quite low, and such analyses are far from routine. Two new developments have extended the scope of mass spectrometry even further to the analysis of peptides and proteins of high mass. [Pg.290]

Routine mass spectrometry can be used to identify many elements from their approximate ratios of isotope abundances. For example, mercury-containing compounds give ions having the seven isotopes in an approximate ratio of 0.2 10.1 17.0 23.1 13.2 29.7 6.8. [Pg.425]

The deterrnination of hydrogen content of an organic compound consists of complete combustion of a known quantity of the material to produce water and carbon dioxide, and deterrnination of the amount of water. The amount of hydrogen present in the initial material is calculated from the amount of water produced. This technique can be performed on macro (0.1—0.2 g), micro (2—10 mg), or submicro (0.02—0.2 mg) scale. Micro deterrninations are the most common. There are many variations of the method of combustion and deterrnination of water (221,222). The oldest and probably most reUable technique for water deterrnination is a gravimetric one where the water is absorbed onto a desiccant, such as magnesium perchlorate. In the macro technique, which is the most accurate, hydrogen content of a compound can be routinely deterrnined to within 0.02%. Instmmental methods, such as gas chromatography (qv) (223) and mass spectrometry (qv) (224), can also be used to determine water of combustion. [Pg.430]

Data Analysis. The computerization of spectrometers and the concomitant digitization of spectra have caused an explosive increase in the use of advanced spectmm analysis techniques. Data analysis in infrared spectrometry is a very active research area and software producers are constantly releasing more sophisticated algorithms. Each instmment maker has adopted an independent format for spectmm files, which has created difficulties in transferring data. The Joint Committee on Atomic and Molecular Physical Data has developed a universal format for infrared spectmm files called JCAMP-DX (52). Most instmment makers incorporate in thek software a routine for translating thek spectmm files to JCAMP-DX format. [Pg.200]

Several instmmental methods are available for quantitative estimation of from moderate to trace amounts of cerium in other materials. X-ray fluorescence is widely available, versatile, and suitable for deterrninations of Ce, and any other Ln, at percent levels and lower in minerals and purer materials. The uv-excited visible luminescence of cerium is characteristic and can be used to estimate Ce content, at ppm levels, in a nonluminescing host. X-ray excited optical luminescence (15), a technique especially appropriate for Ln elements including cerium, rehes on emissions in the visible, and also measures ppm values. Atomic emission spectrometry is appHcable to most lanthanides, including Ce (16). The precise lines used for quantitative measurement must be chosen with care, but once set-up the technique is suitable for routine analyses. [Pg.368]

Uranium and thorium are the first members of natural radioactive chain which makes their determination in natural materials interesting from geochemical and radioecological aspect. They are quantitatively determined as elements by spectrophotometric method and/or their radioisotopes by alpha spectrometry. It is necessary to develop inexpensive, rapid and sensitive methods for the routine researches because of continuous monitoring of the radioactivity level. [Pg.214]

The principle application of XRF thin-film analysis is in the simultaneous determination of composition and thickness. The technique has been used for the routine analysis of single-layer films since 1977 and multiple-layer films since 1986. Two main sources of publications in the fields are the annual volumes of Advances in X-Ray Analysis by Plenum Press, New York, and the Journal of X-Ray Spectrometry by Heyden and Sons, London. Typical examples on the analysis of single-layer films and multiple-layer films are used to illustrate the capabilities of the technique. [Pg.343]

Until the last War, variants of optical emission spectroscopy ( spectrometry when the technique became quantitative) were the principal supplement to wet chemical analysis. In fact, university metallurgy departments routinely employed resident analytical chemists who were primarily experts in wet methods, qualitative and quantitative, and undergraduates received an elementary grounding in these techniques. This has completely vanished now. [Pg.234]

Another relatively recent technique, in its own way as strange as Mossbauer spectrometry, is positron annihilation spectrometry. Positrons are positive electrons (antimatter), spectacularly predicted by the theoretical physicist Dirac in the 1920s and discovered in cloud chambers some years later. Some currently available radioisotopes emit positrons, so these particles arc now routine tools. High-energy positrons are injected into a crystal and very quickly become thermalised by... [Pg.238]

Sophisticated analytical techniques, such as mass spectrometry, are not practical for determining complete composition of FCC feedstocks on a routine basis. Simpler empirical correlations are more often used. They require only routine tests commonly performed by the refinery laboratory. They are excellent alternatives, but they have their limitations ... [Pg.40]

Characterizing an FCC feedstock involves determining both its chemical and physical properties. Because sophisticated analytical techniques, such as mass spectrometry, are not practical on a daily basis, physical properties are used. They provide qualitative measurement of the feed s composition. The refinery laboratory is usually equipped to carry out these physical property tests on a routine basis. The most widely used properties are ... [Pg.45]

The combination of chromatography and mass spectrometry (MS) is a subject that has attracted much interest over the last forty years or so. The combination of gas chromatography (GC) with mass spectrometry (GC-MS) was first reported in 1958 and made available commercially in 1967. Since then, it has become increasingly utilized and is probably the most widely used hyphenated or tandem technique, as such combinations are often known. The acceptance of GC-MS as a routine technique has in no small part been due to the fact that interfaces have been available for both packed and capillary columns which allow the vast majority of compounds amenable to separation by gas chromatography to be transferred efficiently to the mass spectrometer. Compounds amenable to analysis by GC need to be both volatile, at the temperatures used to achieve separation, and thermally stable, i.e. the same requirements needed to produce mass spectra from an analyte using either electron (El) or chemical ionization (Cl) (see Chapter 3). In simple terms, therefore, virtually all compounds that pass through a GC column can be ionized and the full analytical capabilities of the mass spectrometer utilized. [Pg.19]

Although sophisticated methods may constitute the core methods for certification it is useful to include good, well executed routine methods. In order to further minimize systematic error, a conscious purposeful attempt should be made to get methods and procedures with wide-ranging and different sample preparation steps, including no decomposition as in instrumental neutron activation analysis and particle induced X-ray emission spectrometry. [Pg.56]

New developments are, however, needed to make a major step forward in the field of speciation analysis. The first part, isolation and separation of species, may be the easiest one to tackle. For the second part, the measurement of the trace element, a major improvement in sensitivity is needed. As the concentration of the different species lies far below that of the total concentration (species often occur at a mere ng/1 level and below), it looks like existing methods will never be able to cope with the new demands. A new physical principle will have to be explored, away from absorption spectrometry, emission spectrometry, mass spectrometry, and/or more powerful excitation sources than flame, arc or plasma will have to be developed. The goal is to develop routine analytical set-ups with sensitivities that are three to six orders of magnitude lower than achieved hitherto. [Pg.83]

Magnesium deficiency has been long recognized, but hypermagnesia also occurs (Anderson and Talcott 1994). Magnesium can be determined in fluids by FAAS, inductively coupled plasma atomic emission spectrometry (ICP-AES) and ICP-MS. In tissue Mg can be determined directly by solid sampling atomic absorption spectrometry (SS-AAS) (Herber 1994a). Both Ca and Mg in plasma/serum are routinely determined by photometry in automated analyzers. [Pg.202]

Specifically for triazines in water, multi-residue methods incorporating SPE and LC/MS/MS will soon be available that are capable of measuring numerous parent compounds and all their relevant degradates (including the hydroxytriazines) in one analysis. Continued increases in liquid chromatography/atmospheric pressure ionization tandem mass spectrometry (LC/API-MS/MS) sensitivity will lead to methods requiring no aqueous sample preparation at all, and portions of water samples will be injected directly into the LC column. The use of SPE and GC or LC coupled with MS and MS/MS systems will also be applied routinely to the analysis of more complex sample matrices such as soil and crop and animal tissues. However, the analyte(s) must first be removed from the sample matrix, and additional research is needed to develop more efficient extraction procedures. Increased selectivity during extraction also simplifies the sample purification requirements prior to injection. Certainly, miniaturization of all aspects of the analysis (sample extraction, purification, and instrumentation) will continue, and some of this may involve SEE, subcritical and microwave extraction, sonication, others or even combinations of these techniques for the initial isolation of the analyte(s) from the bulk of the sample matrix. [Pg.445]


See other pages where Routine spectrometry is mentioned: [Pg.2390]    [Pg.343]    [Pg.343]    [Pg.353]    [Pg.49]    [Pg.200]    [Pg.208]    [Pg.108]    [Pg.298]    [Pg.383]    [Pg.357]    [Pg.622]    [Pg.536]    [Pg.105]    [Pg.334]    [Pg.335]    [Pg.356]    [Pg.222]    [Pg.134]    [Pg.29]    [Pg.30]    [Pg.255]    [Pg.24]    [Pg.407]    [Pg.248]    [Pg.320]    [Pg.550]    [Pg.223]   
See also in sourсe #XX -- [ Pg.35 ]




SEARCH



Peptides routine spectrometry

Routine

© 2024 chempedia.info