Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Achievement of Separation

Figure 4.1. The achievement of separation. Adapted from J. C. Giddings, Dynamics of Chromatography, Part 1, Marcel Dekker, New York, 1965, p. 33. Courtesy of Marcel Dekker. Figure 4.1. The achievement of separation. Adapted from J. C. Giddings, Dynamics of Chromatography, Part 1, Marcel Dekker, New York, 1965, p. 33. Courtesy of Marcel Dekker.
FJg. 3.14. The Achievement of Separation. Adapted from Giddings, J. C., Dynamics of Chromatography, Part. I, Marcel Dekker, New York, 1965, p. 33. Courtesy of Marcel Dekker, Inc. From Miller, J. M., Chromatography Concepts and Contrasts, John Wiley Sons, Inc., New York, 1987, p. 56. Reproduced courtesy of John Wiley Sons, Inc. [Pg.137]

The choice of separation method to be appHed to a particular system depends largely on the phase relations that can be developed by using various separative agents. Adsorption is usually considered to be a more complex operation than is the use of selective solvents in Hquid—Hquid extraction (see Extraction, liquid-liquid), extractive distillation, or azeotropic distillation (see Distillation, azeotropic and extractive). Consequentiy, adsorption is employed when it achieves higher selectivities than those obtained with solvents. [Pg.291]

Separation by distillation is dependent on the fact that when a Hquid is partially vaporized the vapor and Hquid compositions differ. The vapor phase becomes enriched ia the more volatile components and depleted ia the less volatile components with respect to its equiUbrium Hquid phase. By segregating the phases and repeating the partial vaporization, it is often possible to achieve the desired degree of separation. One measure of the degree of enrichment or the ease of separation is the relative volatiHty defined as ... [Pg.180]

The ratio of wash solvent to extraction solvent is the same in the enriching section as in the stripping section if no solvent is added in the feed. The degree of separation to be achieved can be chosen for the process design, such as 99 percent of component b into the extrac-t stream and 99 percent of component c into the raffinate stream. Then the feed rate can be chosen so that the solute loadings in the extrac-t stream and... [Pg.1465]

Feed Preparation and Feed Size The ability to achieve a separation of different solid particles on the basis of density, as in all physical separation, depends on the degree to which the particles are liberated (detached) from each other. Liberation can be achieved by breaking the material in a manner that causes it to fracfure and free the individual grains of the constituents to be recovered. The degree of separation that can be realized by the dense-media process will depend on the degree of hberation of the individual grains. [Pg.1788]

The effect of concentration of cationic (cetylpyridinium chloride, CPC), anionic (sodium dodecylsulfate, SDS) and nonionic (Twin-80) surfactants as well as effect of pH value on the characteristics of TLC separ ation has been investigated. The best separ ation of three components has been achieved with 210 M CPC and LIO M Twin-80 solutions, at pH 7 (phosphate buffer). Individual solution of SDS didn t provide effective separation of caffeine, theophylline, theobromine, the rate of separ ation was low. The separ ation factor and rate of separ ation was increase by adding of modifiers - alcohol 1- propanol (6 % vol.) or 1-butanol (0.1 % vol.) in SDS solution. The optimal concentration of SDS is 210 M. [Pg.350]

Some initial impulse unbalance is often required to start the whirl motion. Newkirk has suggested that the effect is caused by interfaces of joints in a rotor (shrink fits) rather than defects in rotor material. This type of whirl phenomenon occurs only at rotational speeds above the first critical. The phenomenon may disappear and then reappear at a higher speed. Some success has been achieved in reducing this type of whirl by reducing the number of separate parts, restricting the shrink fits, and providing some lockup of assembled elements. [Pg.207]

The reason for an Exposition is so that there is a description of the system showing how it works and how it controls the achievement of quality. This is different from the policies and procedures. The policies are a guide to action and decision and as such are prescriptive. The procedures are the methods to be used to carry out certain tasks and as such are task related. They need to be relatively simple and concise. A car maintenance manual, for example, tells you how to maintain the car but not how the car works. Some requirements, such as those on traceability and identification, cannot be implemented by specific procedures although you can have specific policies covering such topics. There is no sequence of tasks you can perform to achieve traceability and identification. These requirements tend to be implemented as elements of many procedures which when taken as a whole achieve the traceability and identification requirements. In order that you can demonstrate achievement of such requirements and educate your staff, a description of the system rather than a separate procedure would be an advantage. The Exposition can be structured around the requirements of ISO/TS 16949 and other governing standards. It is a guide or reference document and not auditable. [Pg.164]

Multidimensional planar chromatographic separations, as we have seen, require not only a multiplicity of separation stages, but also that the integrity of separation achieved in one stage be transferred to the others. The process of separation on a two-dimensional plane is the clearest example of multidimensional separations. The greatest strength of MD-PC, when properly applied, is that compounds are distributed widely over two-dimensional space of high zone (peak) capacity. Another... [Pg.193]

The improvements in resolution achieved in each deconvolution step are shown in Figure 3-3. While the initial library could only afford a modest separation of DNB-glutamic acid, the library with proline in position 4 also separated DNP derivatives of alanine and aspartic acid, and further improvement in both resolution and the number of separable racemates was observed for peptides with hydrophobic amino acid residues in position 3. However, the most dramatic improvement and best selectivity were found for c(Arg-Lys-Tyr-Pro-Tyr-(3-Ala) (Scheme 3-2a) with the tyrosine residue at position 5 with a resolution factor as high as 28 observed for the separation of DNP-glutamic acid enantiomers. [Pg.66]

The degree of separation achieved in this system can be calculated according to... [Pg.142]

In general, the majority of separations are achieved by exploiting dispersive interactions in the stationary phase and modifying and controlling the absolute and relative retention of the solutes by adjusting the composition of the mobile phase. It is far easier to adjust the mobile phase by selecting different mixtures of water and the solvents methanol, acetonitrile and/or tetrahydrofuran than change from column to column. [Pg.320]

In such matters some progress can be achieved by combinations of the decomposition method and the method of separation of variables. For example, this can be done using the method of separation of variables for the reduced system (6) upon eliminating the unknown vectors with odd subscripts j. This trick allows one to solve problem (2) here the expenditures of time are Q 2nin2 og N2 arithmetic operation, half as much than required before in the method of separation of variables. [Pg.651]

In a classical neural pathway, such as that depicted in Fig. 1.3, neuron A must excite neuron B and at the same time inhibit neuron C in order to optimise the excitation of B. It could achieve this with one NT able to activate receptors linked to different events on B and C. Of course, neuron C would have other inputs, some of which would be excitatory and if the same NT was used it could activate the inhibitory mechanism on C as well. Also, the NT released from A might be able to stimulate as well as inhibit neuron C (Fig. 1.3(a)). Even the provision of separate receptors linked to excitation and inhibition would not overcome these problems since both would be accessible to the NT. One possible solution, used in the CNS, is to restrict the NT to the synapse at which it is released by structural barriers or rapid degradation. Also the inputs and receptors linked to excitation could be separated anatomically from those linked to inhibition and, in fact, there is electrophysiological and morphological evidence that excitatory synapses are mainly on dendrites and inhibitory ones on the soma of large neurons (Fig. 1.3(b)). Nevertheless, the problem of overlap would be eased if two NTs were released, one to activate only those receptors linked to excitation and another to evoke just inhibition, i.e. place the determinant of function partly back on the NT (Fig. 1.3(c)). This raises a different problem which has received much consideration. Can a neuron release more than one NT ... [Pg.11]


See other pages where The Achievement of Separation is mentioned: [Pg.3]    [Pg.35]    [Pg.36]    [Pg.37]    [Pg.183]    [Pg.184]    [Pg.184]    [Pg.270]    [Pg.33]    [Pg.882]    [Pg.3]    [Pg.35]    [Pg.36]    [Pg.37]    [Pg.183]    [Pg.184]    [Pg.184]    [Pg.270]    [Pg.33]    [Pg.882]    [Pg.405]    [Pg.394]    [Pg.404]    [Pg.548]    [Pg.564]    [Pg.263]    [Pg.432]    [Pg.164]    [Pg.168]    [Pg.309]    [Pg.30]    [Pg.460]    [Pg.70]    [Pg.59]    [Pg.169]    [Pg.207]    [Pg.104]    [Pg.1029]    [Pg.119]    [Pg.57]    [Pg.286]    [Pg.411]    [Pg.128]    [Pg.757]   


SEARCH



Achievability

Achievable

Achievement

Achievers

© 2024 chempedia.info