Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Risk assessment hazard characterization

Leung, W.W. and D.J. Paustenbach. 1995. Physiologically based pharmacokinetic and pharmacodynamic modeling in health risk assessment and characterization of hazardous substances. Toxicol. Lett. 79 55-65. [Pg.407]

Each hazard classification and communication system (workplace, consumer, transport) begins coverage with an assessment of the hazards posed by the chemical or chemical product involved. The degree of its capacity to harm depends on its intrinsic properties, i.e. its capacity to interfere with normal biological processes, and its capacity to bum, explode, corrode, etc. This is based primarily on a review of the scientific studies available. The concept of risk or the likelihood of harm occurring, and subsequently communication of that information, is introduced when exposure is considered in conjunction with the data regarding potential hazards. The basic approach to risk assessment is characterized by the simple formula ... [Pg.7]

In a risk assessment, hazard likelihood can be characterized in terms of probability, frequency, or qualitative criteria. Quite often, the term hazard probability is incorrectly used when the actual assessment is done in terms of frequency or qualitative criteria. This is why hazard likelihood is a more accurate term. Likelihood is a measure of how possible or likely it is that an event will occur, such as a hazard-mishap. Likelihood can typically be characterized in one of the following ways ... [Pg.191]

The purpose of hazard analysis and risk assessment ia the chemical process industry is to (/) characterize the hazards associated with a chemical facihty (2) determine how these hazards can result in an accident, and (J) determine the risk, ie, the probabiUty and the consequence of these hazards. The complete procedure is shown in Figure 1 (see also Industrial hygiene Plant safety). [Pg.469]

The remaining step in the hazard identification and risk assessment procedure shown in Figure 1 is to decide on risk acceptance. For this step, few resources are available and analysts are left basically by themselves. Some companies have formal risk acceptance criteria. Most companies, however, use the results on a relative basis. That is, the results are compared to another process or processes where hazards and risks are weU-characterized. [Pg.478]

Hazard identification involves gathering and evaluating data on the types of health injury or disease that may be produced by a chemical and on the conditions of exposure under which injury or disease is produced. It may also involve characterization of the behavior of a chemical within the body and the interactions it undergoes with organs, cells, or even parts of cells. Hazard identification is not risk assessment. It is a scientific determination of whether observed toxic effects in one setting will occur in other settings. [Pg.226]

Hazard characterization and delineation of dose-effect or dose-response relationships. 3. Assessment of exposure 4. Risk characterization... [Pg.328]

Most human or environmental healtli hazards can be evaluated by dissecting tlie analysis into four parts liazard identification, dose-response assessment or hazard assessment, exposure assessment, and risk characterization. For some perceived healtli liazards, tlie risk assessment might stop with tlie first step, liazard identification, if no adverse effect is identified or if an agency elects to take regulatory action witliout furtlier analysis. Regarding liazard identification, a hazard is defined as a toxic agent or a set of conditions that luis the potential to cause adverse effects to hmnan health or tlie environment. Healtli hazard identification involves an evaluation of various forms of information in order to identify the different liaz.ards. Dose-response or toxicity assessment is required in an overall assessment responses/cffects can vary widely since all chemicals and contaminants vary in their capacity to cause adverse effects. This step frequently requires that assumptions be made to relate... [Pg.285]

Dose-response assessment is the process of obtaining quantitative information about the probability of human illness following exposure to a hazard it is the translation of exposure into harm. Dose-response curves have been determined for some hazards. The curves show the relationship of dose exposure and the probabihty of a response. Since vahdated dose-response relationships are scarce, various other inputs are used to underpin the hazard characterization phase of risk assessment. [Pg.570]

Risk characterization is the last step in the risk assessment procedure. It is the quantitative or semi-quantitative estimation, including uncertainties, of frequency and severity of known or potential adverse health effects in a given population based on the previous steps. Risk characterization is the step that integrates information on hazard and exposure to estimate the magnitude of a risk. Comparison of the numerical output of hazard characterization with the estimated intake will give an indication of whether the estimated intake is a health concern. ... [Pg.571]

The degree of confidence in the final estimation of risk depends on variability, uncertainty, and assumptions identified in all previous steps. The nature of the information available for risk characterization and the associated uncertainties can vary widely, and no single approach is suitable for all hazard and exposure scenarios. In cases in which risk characterization is concluded before human exposure occurs, for example, with food additives that require prior approval, both hazard identification and hazard characterization are largely dependent on animal experiments. And exposure is a theoretical estimate based on predicted uses or residue levels. In contrast, in cases of prior human exposure, hazard identification and hazard characterization may be based on studies in humans and exposure assessment can be based on real-life, actual intake measurements. The influence of estimates and assumptions can be evaluated by using sensitivity and uncertainty analyses. - Risk assessment procedures differ in a range of possible options from relatively unso-... [Pg.571]

In this chapter the risk assessment is briefly introduced. Risk assessment is divided into four steps hazard identification, hazard characterization, exposure assessment, and risk characterization. This chapter also highlights five risk and life cycle impact assessment models (EUSES, USEtox, GLOBOX, SADA, and MAFRAM) that allows for assessment of risks to human health and the environment. In addition other 12 models were appointed. Finally, in the last section of this chapter, there is a compilation of useful data sources for risk assessment. The data source selection is essential to obtain high quality data. This source selection is divided into two parts. First, six frequently used databases for physicochemical... [Pg.91]

Due to this, it is necessary to assess the risk to human health and the environment due to the exposure to these chemical additives. In this chapter the impacts that a substance can cause to a certain receptor (humans and the environment) and the harms to the receptor at different exposure levels are identified in hazard identification and hazard characterization steps, respectively. Exposure assessment takes into account the amount, frequency, and duration of the exposure to the substance. Finally, risk characterization evaluates the increased risk caused by such exposure to the exposed population. [Pg.93]

For the two aforementioned steps, hazard identification and hazard characterization, data adequacy is of high importance. The data adequacy is defined by the reliability and the relevance of the data for human risk assessment [3],... [Pg.95]

Chemical Allergy Hazard Identification, Hazard Characterization, and Risk Assessment... [Pg.591]

This chapter will review the application of these methods for the hazard identification and characterization of chemical allergens and, where appropriate, for the measurement of relative potency in the context of risk assessment. [Pg.592]

Risk Assessment The scientific process of evaluating the toxic properties of a chemical and the conditions of human exposure to it, in order to ascertain the likelihood that exposed humans will be adversely affected, and to characterize the nature of the effects they may experience. It may contain some or all of the following four steps hazard identification, dose-response assessment, exposure assessment, and risk characterization. [Pg.331]

Within the framework depicted in Figure 7.1, the content of risk assessment proposed by the committee is shown as comprising four analytic steps hazard identification, dose-response assessment, human exposure assessment, and a final, integrating step called risk characterization. These four terms and the activities they describe have come to be widely accepted within the risk assessment community, on... [Pg.206]

Figure 5-1 shows how the FHA is integrated into an overall risk assessment. A process hazard analysis is required to identify likely fire scenarios that are carried forward to the FHA. An FHA provides the tools to characterize the hazards and evaluate consequences. The results are incorporated into an overall risk assessment. See Chapter 6 for more information on fire risk assessment. [Pg.51]

The process includes hazard identification and hazard characterization. The process focuses on the hazard in contrast to risk assessment where exposure assessment is a distinct additional step. [Pg.6]

Hazard characterization is the second stage in the process of hazard assessment, and the second step in risk assessment. [Pg.6]

The Risk Assessment process includes four steps hazard identification, hazard characterization (related term dose-response assessment), exposure assessment, and risk characterization. It is the first component in a risk analysis process. [Pg.7]

For both human health and the environment, the risk assessment process includes (i) an exposure assessment, (ii) an effect assessment (hazard assessment and hazard characterization -addressed in detail in Chapter 4), and (iii) a risk characterization (addressed in detail in Chapter 8). As a part of the effect assessment, classification and labeling of the substance according to the criteria laid down in Directive 67/548/EEC (EEC 1967) is also addressed (Section 2.4.1.8). [Pg.36]

Hazard assessment is A process designed to determine the possible adverse effects of an agent or simation to which an organism, system or (sub) population could be exposed. The process includes hazard identification and hazard characterization. The process focuses on the hazard in contrast to risk assessment where exposure assessment is a distinct additional step. ... [Pg.49]


See other pages where Risk assessment hazard characterization is mentioned: [Pg.721]    [Pg.721]    [Pg.5]    [Pg.659]    [Pg.137]    [Pg.157]    [Pg.66]    [Pg.418]    [Pg.334]    [Pg.289]    [Pg.294]    [Pg.566]    [Pg.98]    [Pg.228]    [Pg.14]    [Pg.600]    [Pg.263]    [Pg.266]    [Pg.34]    [Pg.2]   
See also in sourсe #XX -- [ Pg.570 , Pg.573 ]

See also in sourсe #XX -- [ Pg.386 , Pg.387 ]




SEARCH



Hazard risk assessment

Health risk assessment hazard characterization

Risks hazards

© 2024 chempedia.info