Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reductions alcohol synthesis, lithium aluminum hydride

On the basis of this mechanistic reasoning, it is apparent that acyl chlorides and anhydrides should also be reduced to primary alcohols by lithium aluminum hydride. Indeed, this is the case. However, because these compounds are less convenient to work with than esters and offer no advantages in synthesis, they are seldom used as substrates for such reductions. [Pg.826]

Numerous methods for the reduction of ketones and aldehydes to the corresponding secondary and primary alcohols, such as the use of several complex metal hydrides, have found wide application in organic synthesis. Lithium aluminum hydride (LiAlH4) and sodium borohydride (NaBH4) are the most popular of these achiral reagents. However, since a natural product synthesis has to fulfill demands in terms of both efficiency and stereoselectivity, these methods can seldom be used with prochiral substrates. [Pg.140]

Jorgensen et al. found that reduction of an allylic alcohol by lithium aluminum hydride can be carried beyond the stage of the saturated alcohol to give a cyclopropane. Thus a cinnamyl acid, ester, aldehyde, or ketone on reduction with 100% excess LiAlHj in refluxing tetrahydrofurane or dimethoxyethane affords a phenyl-cyclopropane in yield of 45-80%. The reaction complements the Simmons-Smith synthesis. [Pg.299]

Other impressive results have been reported, for example, mfo-5-acylnorbornene 14 undergoes intramolecular cycloadditions to give polycyclic oxetanes 1562-65. Interestingly, the quantum yield of cyclization is favored by increasing bulk of the substituent. Reductive cleavage by lithium aluminum hydride occurs selectively to allow the synthesis of tricyclic alcohols 16. [Pg.943]

Hydroisoquinolines. In addition to the ring-closure reactions previously cited, a variety of reduction methods are available for the synthesis of these important ring systems. Lithium aluminum hydride or sodium in Hquid ammonia convert isoquinoline to 1,2-dihydroisoquinoline (175). Further reduction of this intermediate or reduction of isoquinoline with tin and hydrochloric acid, sodium and alcohol, or catalyticaHy using platinum produces... [Pg.398]

LY311727 is an indole acetic acid based selective inhibitor of human non-pancreatic secretory phospholipase A2 (hnpsPLA2) under development by Lilly as a potential treatment for sepsis. The synthesis of LY311727 involved a Nenitzescu indolization reaction as a key step. The Nenitzescu condensation of quinone 4 with the p-aminoacrylate 39 was carried out in CH3NO2 to provide the desired 5-hydroxylindole 40 in 83% yield. Protection of the 5-hydroxyl moiety in indole 40 was accomplished in H2O under phase transfer conditions in 80% yield. Lithium aluminum hydride mediated reduction of the ester functional group in 41 provided the alcohol 42 in 78% yield. [Pg.150]

Butyl alcohol in synthesis of phenyl 1-butyl ether, 46, 89 1-Butyl azidoacetate, 46, 47 hydrogenation of, 46, 47 1-Butyl chloroacetate, reaction with sodium azide, 46, 47 lre l-4-i-BUTYLCYCLOHEXANOL, 47,16 4-(-Butylcyclohexanonc, reduction with lithium aluminum hydride and aluminum chloride, 47, 17 1-Butyl hypochlorite, reaction with cy-clohexylamine, 46,17 l-Butylthiourea, 46, 72... [Pg.123]

The reduction of a-hydroxynitriles to yield vicinal amino alcohols is conveniently accomplished with complex metal hydrides for example, lithium aluminum hydride or sodium borohydride [69]. However, it is still worth noting that a two-step chemo-enzymatic synthesis of (R)-2-amino-l-(2-furyl)ethanol for laboratory production was developed followed by successful up-scaling to kilogram scale using NaBH4/CF3COOH as reductant [70],... [Pg.115]

The nitrile group in 82 has been transformed into other versatile functional groups, and the derivatives so obtained have been used in the synthesis of various naturally occurring C-nucleosides and their analogs. Reduction of 82 with lithium aluminum hydride gave the amine 90 which was, in turn, transformed84 into the ureido and N-ni-troso derivatives (91-93) by treatment with nitrourea, followed by benzylation, and nitrosation.85 The diazo derivative 94, obtained by treatment of 93 with alcoholic potassium hydroxide, was a key intermediate in the synthesis of formycin B and oxoformycin B (see Section III,2,a,b). [Pg.134]

Acetylenic alcohols, usually of propargylic type, are frequently intermediates in the synthesis, and selective reduction of the triple bond to a double bond is desirable. This can be accomplished by carefully controlled catalytic hydrogenation over deactivated palladium [56, 364, 365, 366, 368, 370], by reduction with lithium aluminum hydride [555, 384], zinc [384] and chromous sulfate [795], Such partial reductions were carried out frequently in alcohols in which the triple bonds were conjugated with one or more double bonds [56, 368, 384] and even aromatic rings [795]. [Pg.78]

Numerous methods for the synthesis of salicyl alcohol exist. These involve the reduction of salicylaldehyde or of salicylic acid and its derivatives. The alcohol can be prepared in almost theoretical yield by the reduction of salicylaldehyde with sodium amalgam, sodium borohydride, or lithium aluminum hydride by catalytic hydrogenation over platinum black or Raney nickel or by hydrogenation over platinum and ferrous chloride in alcohol. The electrolytic reduction of salicylaldehyde in sodium bicarbonate solution at a mercury cathode with carbon dioxide passed into the mixture also yields saligenin. It is formed by the electrolytic reduction at lead electrodes of salicylic acids in aqueous alcoholic solution or sodium salicylate in the presence of boric acid and sodium sulfate. Salicylamide in aqueous alcohol solution acidified with acetic acid is reduced to salicyl alcohol by sodium amalgam in 63% yield. Salicyl alcohol forms along with -hydroxybenzyl alcohol by the action of formaldehyde on phenol in the presence of sodium hydroxide or calcium oxide. High yields of salicyl alcohol from phenol and formaldehyde in the presence of a molar equivalent of ether additives have been reported (60). Phenyl metaborate prepared from phenol and boric acid yields salicyl alcohol after treatment with formaldehyde and hydrolysis (61). [Pg.293]

The iV-aminopyrrole - benzene ring methodology has been applied to a synthesis of the 9,10-dihydrophenanthrene juncusol (218) (81TL1775). Condensation of the tetralone (213) with pyrrolidine and reaction of the enamine with ethyl 3-methoxycarbonylazo-2-butenoate gave pyrrole (214). Diels-Alder reaction of (214) with methyl propiolate produced a 3 1 mixture of (215) and its isomer in 70% yield. Pure (215) was reduced selectively with DIBAL to the alcohol, reoxidized to aldehyde, and then treated with MCPBA to generate formate (216). Saponification to the phenol followed by O-methylation and lithium aluminum hydride reduction of the hindered ester afforded (217), an intermediate which had been converted previously to juncusol (Scheme 46). [Pg.433]

An efficient synthesis of ( )-quebrachamine is based on the construction of a suitable precursor via ring cleavage of an a-diketone monothioketal (810) (80JCS(P1)457). This monothioketal, available from 4-ethoxycarbonylcyclohexanone ethylene ketal, was fragmented to the dithianyl half ester (811) with sodium hydride in the presence of water. Reaction of (811) with tryptamine and DCC provided an amide which was converted to the stereoisomeric lactams (812) on hydrolysis of the dithiane function. Reduction of either the a- or /3-ethyl isomer with lithium aluminum hydride followed by conversion of the derived amino alcohol to its mesylate produced the amorphous quaternary salt (813). On reduction with sodium in liquid ammonia, the isomeric salts provided ( )-quebrachamine (814 Scheme 190). [Pg.490]

In this context, a chiral hydride reagent, BINAL-H, prepared by modification of lithium aluminum hydride with equimolar amounts of optically pure binaphthol and a simple alcohol, is extremely useful (9b, 18a, 35) Scheme 15 shows the utility of the three-component coupling synthesis. The < > side-chain unit and the hydroxycyclopentenone can be prepared with very high enantioselectivity by reduction of the corresponding enone precursors (35-38). [Pg.359]

Liquid injection molding, for silicone rubbers, 3, 674—675 Liquid ligands, in metal vapor synthesis, 1, 229 Liquid-phase catalysis, supported, for green olefin hydroformylation, 12, 855 Lithiacarbaboranes, preparation, 3, 114 Lithiation, arene chromium tricarbonyls, 5, 236 Lithium aluminum amides, reactions, 3, 282 Lithium aluminum hydride, for alcohol reductions, 3, 279 Lithium borohydride, in hydroborations, 9, 158 Lithium gallium hydride, in reduction reactions, 9, 738 Lithium indium hydride, in carbonyl reductions, 9, 713—714... [Pg.136]

The second synthesis of lasubine II (6) by Narasaka et al. utilizes stereoselective reduction of a /3-hydroxy ketone O-benzyl oxime with lithium aluminum hydride, yielding the corresponding syn-/3-amino alcohol (Scheme 5) 17, 18). The 1,3-dithiane derivative 45 of 3,4-dimethoxybenzaldehyde was converted to 46 in 64% yield via alkylation with 2-bromo-l,l-dimethoxyethane followed by acid hydrolysis. Treatment of the aldol, obtained from condensation of 46 with the kinetic lithium enolate of 5-hexen-2-one, with O-benzylhydroxylamine hy-... [Pg.162]


See other pages where Reductions alcohol synthesis, lithium aluminum hydride is mentioned: [Pg.421]    [Pg.421]    [Pg.416]    [Pg.110]    [Pg.458]    [Pg.293]    [Pg.436]    [Pg.438]    [Pg.36]    [Pg.40]    [Pg.66]    [Pg.145]    [Pg.194]    [Pg.200]    [Pg.201]    [Pg.95]    [Pg.82]    [Pg.413]    [Pg.75]    [Pg.15]    [Pg.1414]    [Pg.62]    [Pg.157]    [Pg.72]    [Pg.424]    [Pg.322]    [Pg.87]    [Pg.75]    [Pg.34]    [Pg.147]   
See also in sourсe #XX -- [ Pg.212 ]




SEARCH



Alcohol aluminum

Alcohol lithium

Alcoholic reduction

Alcohols reduction

Alcohols synthesis

Alcohols synthesis, lithium aluminum hydride

Aluminum alcoholate

Aluminum reduction

Aluminum synthesis

Hydrides alcohols

Hydrides synthesis

Lithium alcoholate

Lithium aluminum hydride reduction, alcohols

Lithium aluminum hydride synthesis

Lithium aluminum hydride, reduction

Lithium hydride reduction

Lithium reductions

Lithium synthesis

Reduction aluminum hydride

© 2024 chempedia.info