Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols synthesis, lithium aluminum hydride

On the basis of this mechanistic reasoning, it is apparent that acyl chlorides and anhydrides should also be reduced to primary alcohols by lithium aluminum hydride. Indeed, this is the case. However, because these compounds are less convenient to work with than esters and offer no advantages in synthesis, they are seldom used as substrates for such reductions. [Pg.826]

Numerous methods for the reduction of ketones and aldehydes to the corresponding secondary and primary alcohols, such as the use of several complex metal hydrides, have found wide application in organic synthesis. Lithium aluminum hydride (LiAlH4) and sodium borohydride (NaBH4) are the most popular of these achiral reagents. However, since a natural product synthesis has to fulfill demands in terms of both efficiency and stereoselectivity, these methods can seldom be used with prochiral substrates. [Pg.140]

Jorgensen et al. found that reduction of an allylic alcohol by lithium aluminum hydride can be carried beyond the stage of the saturated alcohol to give a cyclopropane. Thus a cinnamyl acid, ester, aldehyde, or ketone on reduction with 100% excess LiAlHj in refluxing tetrahydrofurane or dimethoxyethane affords a phenyl-cyclopropane in yield of 45-80%. The reaction complements the Simmons-Smith synthesis. [Pg.299]

The reaction of esters with Gngnard reagents and with lithium aluminum hydride both useful m the synthesis of alcohols were described earlier They are reviewed m Table 20 4 on page 848... [Pg.846]

Hydroisoquinolines. In addition to the ring-closure reactions previously cited, a variety of reduction methods are available for the synthesis of these important ring systems. Lithium aluminum hydride or sodium in Hquid ammonia convert isoquinoline to 1,2-dihydroisoquinoline (175). Further reduction of this intermediate or reduction of isoquinoline with tin and hydrochloric acid, sodium and alcohol, or catalyticaHy using platinum produces... [Pg.398]

The reaction of esters with Gr-ignard reagents and with lithium aluminum hydride, both useful in the synthesis of alcohols, were described earlier. They are reviewed in Table... [Pg.846]

LY311727 is an indole acetic acid based selective inhibitor of human non-pancreatic secretory phospholipase A2 (hnpsPLA2) under development by Lilly as a potential treatment for sepsis. The synthesis of LY311727 involved a Nenitzescu indolization reaction as a key step. The Nenitzescu condensation of quinone 4 with the p-aminoacrylate 39 was carried out in CH3NO2 to provide the desired 5-hydroxylindole 40 in 83% yield. Protection of the 5-hydroxyl moiety in indole 40 was accomplished in H2O under phase transfer conditions in 80% yield. Lithium aluminum hydride mediated reduction of the ester functional group in 41 provided the alcohol 42 in 78% yield. [Pg.150]

Butyl alcohol in synthesis of phenyl 1-butyl ether, 46, 89 1-Butyl azidoacetate, 46, 47 hydrogenation of, 46, 47 1-Butyl chloroacetate, reaction with sodium azide, 46, 47 lre l-4-i-BUTYLCYCLOHEXANOL, 47,16 4-(-Butylcyclohexanonc, reduction with lithium aluminum hydride and aluminum chloride, 47, 17 1-Butyl hypochlorite, reaction with cy-clohexylamine, 46,17 l-Butylthiourea, 46, 72... [Pg.123]

The reduction of a-hydroxynitriles to yield vicinal amino alcohols is conveniently accomplished with complex metal hydrides for example, lithium aluminum hydride or sodium borohydride [69]. However, it is still worth noting that a two-step chemo-enzymatic synthesis of (R)-2-amino-l-(2-furyl)ethanol for laboratory production was developed followed by successful up-scaling to kilogram scale using NaBH4/CF3COOH as reductant [70],... [Pg.115]

The nitrile group in 82 has been transformed into other versatile functional groups, and the derivatives so obtained have been used in the synthesis of various naturally occurring C-nucleosides and their analogs. Reduction of 82 with lithium aluminum hydride gave the amine 90 which was, in turn, transformed84 into the ureido and N-ni-troso derivatives (91-93) by treatment with nitrourea, followed by benzylation, and nitrosation.85 The diazo derivative 94, obtained by treatment of 93 with alcoholic potassium hydroxide, was a key intermediate in the synthesis of formycin B and oxoformycin B (see Section III,2,a,b). [Pg.134]

Acetylenic alcohols, usually of propargylic type, are frequently intermediates in the synthesis, and selective reduction of the triple bond to a double bond is desirable. This can be accomplished by carefully controlled catalytic hydrogenation over deactivated palladium [56, 364, 365, 366, 368, 370], by reduction with lithium aluminum hydride [555, 384], zinc [384] and chromous sulfate [795], Such partial reductions were carried out frequently in alcohols in which the triple bonds were conjugated with one or more double bonds [56, 368, 384] and even aromatic rings [795]. [Pg.78]

Numerous methods for the synthesis of salicyl alcohol exist. These involve the reduction of salicylaldehyde or of salicylic acid and its derivatives. The alcohol can be prepared in almost theoretical yield by the reduction of salicylaldehyde with sodium amalgam, sodium borohydride, or lithium aluminum hydride by catalytic hydrogenation over platinum black or Raney nickel or by hydrogenation over platinum and ferrous chloride in alcohol. The electrolytic reduction of salicylaldehyde in sodium bicarbonate solution at a mercury cathode with carbon dioxide passed into the mixture also yields saligenin. It is formed by the electrolytic reduction at lead electrodes of salicylic acids in aqueous alcoholic solution or sodium salicylate in the presence of boric acid and sodium sulfate. Salicylamide in aqueous alcohol solution acidified with acetic acid is reduced to salicyl alcohol by sodium amalgam in 63% yield. Salicyl alcohol forms along with -hydroxybenzyl alcohol by the action of formaldehyde on phenol in the presence of sodium hydroxide or calcium oxide. High yields of salicyl alcohol from phenol and formaldehyde in the presence of a molar equivalent of ether additives have been reported (60). Phenyl metaborate prepared from phenol and boric acid yields salicyl alcohol after treatment with formaldehyde and hydrolysis (61). [Pg.293]


See other pages where Alcohols synthesis, lithium aluminum hydride is mentioned: [Pg.421]    [Pg.269]    [Pg.421]    [Pg.416]    [Pg.458]    [Pg.293]    [Pg.436]    [Pg.438]    [Pg.36]    [Pg.40]    [Pg.176]    [Pg.378]    [Pg.66]    [Pg.145]    [Pg.194]    [Pg.200]    [Pg.201]    [Pg.156]    [Pg.95]    [Pg.82]    [Pg.413]    [Pg.75]    [Pg.15]    [Pg.195]    [Pg.397]    [Pg.1414]    [Pg.352]    [Pg.62]   
See also in sourсe #XX -- [ Pg.212 ]




SEARCH



1,2-Amino alcohols, synthesis, lithium aluminum hydride

Alcohol aluminum

Alcohol lithium

Alcohols synthesis

Aldehydes alcohol synthesis, lithium aluminum hydride

Aluminum alcoholate

Aluminum synthesis

Anhydrides alcohol synthesis, lithium aluminum hydride

Esters alcohol synthesis, lithium aluminum hydride

Hydrides alcohols

Hydrides synthesis

Lithium alcoholate

Lithium aluminum hydride alcohol synthesis from acid chlorides

Lithium aluminum hydride alcohol synthesis from epoxides

Lithium aluminum hydride alcohol synthesis from esters

Lithium aluminum hydride synthesis

Lithium synthesis

Reductions alcohol synthesis, lithium aluminum hydride

© 2024 chempedia.info