Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase-transfer conditions

The alkynyl iodide 150 undergoes the oxidative addition to form an alky-nylpalladium iodide, and subsequent insertion of an alkene gives the conjugated enyne 151 under phase-transfer conditions[120]. [Pg.149]

Nevertheless, they are stable to standard work-up and purification methods. The benzenesulfonyl group can be introduced using base and an aprotic solvent[3] or under phase transfer conditions[4], Table 9.2 gives some representative examples of acylation and sulfonylations. [Pg.92]

Phase transfer catalysis is the subject of an article in the April 1978 issue of the Journal of Chemical Educa tion (pp 235-238) This arti cle includes examples of a variety of reactions carried out under phase transfer conditions... [Pg.926]

The preparation of pen tanenitrile under phase transfer conditions was described in Section 22 5... [Pg.932]

Reaction of perfluoroaLkenes and hypochlorites has been shown to be a general synthesis of perfluoroepoxides (32) (eq. 7). This appears to be the method of choice for the preparation of epoxides from internal fluoroalkenes (38). Excellent yields of HFPO from hexafluoropropylene and sodium hypochlorite using phase-transfer conditions are claimed (34). [Pg.304]

A polyester backbone with two HFIP groups (12F aromatic polyester of 12F-APE) was derived by the polycondensation of the diacid chloride of 6FDCA with bisphenol AF or bisphenol A under phase-transfer conditions (120). These polymers show complete solubkity in THF, chloroform, ben2ene, DMAC, DMF, and NMP, and form clear, colorless, tough films the inherent viscosity in chloroform at 25°C is 0.8 dL/g. A thermal stabkity of 501°C (10% weight loss in N2) was observed. [Pg.539]

A2iridines (X = H) can be alkylated on the nitrogen, with retention of the three-membered ring, by reaction with aUphatic and aromatic haUdes in the presence of base (2,154). The reaction can also be carried out, in some cases with very good yields, under phase-transfer conditions using 30% NaOH and optionally an organic solvent (155). If the haUdes do not react readily, the alkaU metal salts (X = Na) of the corresponding ayiridine can be used (156—158) to form, for example, triethyleneiminemethane [23974-29-0].. [Pg.6]

A AlI lation. 1-Substitution is favored when the indole ring is deprotonated and the reaction medium promotes the nucleophilicity of the resulting indole anion. Conditions which typically result in A/-alkylation are generation of the sodium salt by sodium amide in Hquid ammonia, use of sodium hydride or a similar strong base in /V, /V- dim ethyl form am i de or dimethyl sulfoxide, or the use of phase-transfer conditions. [Pg.85]

Naphthaleneacetic acid has also been prepared by the carbonyl-insertion reaction of 1-chloromethylnaphthalene cataly2ed by carbonyl cobalt cation (90,91). Carboxylation of 1-chloromethylnaphthalene in the presence of the catalyst Pd[P(CgH )2]2Cl2 under phase-transfer conditions gave 1-naphthaleneacetic acid in 78% yield (92). [Pg.503]

Excellent yields of the former product are also obtained with quinoline N-oxide. Improved yields of Reissert compounds are found under phase-transfer conditions (29). The regiochemistry of the method changes dramatically with /V-alkyl quin olinium salts, eg, /V-methy1quino1inium iodide [3947-76-0] (12), which form 4-cyanoquinoline [23395-72-4] (13) (30), through the intermediary in this example of A[-methyl-4-cyano-l,4-dihydroquinoline... [Pg.390]

Isoquinoline also forms Reissert compounds when treated with benzoyl chloride and alkyl cyanide (28), especially under phase-transfer conditions (29). The W-phenylsulfonyl Reissert has been converted to 1-cyanoisoquinoline with sodium borohydride under mild conditions (154). When the AJ-benzoyl-l-alkyl derivative is used, reductive fission occurs and the 1-alkyLisoquinoline is obtained. [Pg.396]

The synthesis of optically active epoxy-1,4-naphthoquinones (69) using ben2ylquininium chloride as the chiral catalyst under phase-transfer conditions has been reported (67). 2-Meth5l-l,4-naphthoquinone (R = CH ) (31) yields 70% of levorotatory (37). 2-Cyclohexyl-l,4-naphthoquinone... [Pg.412]

The dimethyl ethers of hydroquiaones and 1,4-naphthalenediols can be oxidized with silver(II) oxide or ceric ammonium nitrate. Aqueous sodium hypochlorite under phase-transfer conditions has also produced efficient conversion of catechols and hydroquiaones to 1,2- and 1,4-benzoquiaones (116), eg, 4-/-butyl-l,2-ben2oquinone [1129-21-1] ia 92% yield. [Pg.418]

The benzyne adducts prepared from A -methylpyrrole (and A -methylisoindole) are deaminated conveniently by dichlorocarbene generated under phase-transfer conditions (81JOC1025 to give a convenient route to substituted naphthalenes (134) (and anthracenes) (Scheme 49). [Pg.66]

A mild and effective method for obtaining N- acyl- and N- alkyl-pyrroles and -indoles is to carry out these reactions under phase-transfer conditions (80JOC3172). For example, A-benzenesulfonylpyrrole is best prepared from pyrrole under phase-transfer conditions rather than by intermediate generation of the potassium salt (81TL4901). In this case the softer nature of the tetraalkylammonium cation facilitates reaction on nitrogen. The thallium salts of indoles prepared by reaction with thallium(I) ethoxide, a benzene-soluble liquid. [Pg.82]

Phase transfer catalysis has been used with success to prepare N- substituted pyrazoles (78MI40403, 79MI40408, 70JHC1237, 80JOC3172) and this procedure can be considered the simplest and most efficient way to obtain these compounds. Experimental design methodology has been used to study the influence of the factors on the reaction between pyrazole and -butyl bromide under phase transfer conditions (79MI40408). [Pg.230]

Electronegatively substituted acetylenes, such as dimethyl acetylenedicar-boxylate, do not react under normal conditions but will add the elements of hydrogen fluoride by reaction with fluoride ion (e g, CsF or tetraalkylammonium dihydrogen trifluoride) and a proton source under phase-transfer conditions [49, 50] (equation 8)... [Pg.58]

Oxidation ofpentafluoroaniline by sodium hypochlorite under phase-transfer conditions leads to perfluoroazobenzene as the main product [86] (equation 78)... [Pg.348]

Perfluoroalkylaiion of thiols by perfluoroalkyl iodides can be performed in liquid ammonia under UV irradiation [59, 60], This photochemical reaction can also occur with thiolates in acetomtrile or under phase-transfer conditions [60. 61] (equations 51 and 52). [Pg.459]

NaH, /7-MeOQH4CH2Br, DMF, —5°, 1 h, 65%. Other bases, such as BuLi, ° dimsyl potassium," and NaOH under phase-transfer conditions," have been used to introduce the MPM group. The use of (n-Bu)4N I for the in situ preparation of the very reactive p-methoxybenzyl iodide often improves the protection of hindered alcohols." In the following example, selectivity is probably achieved because of the increased acidity of the 2 -hydroxyl group ... [Pg.87]

In addition, NaOMe, and NaNH2, have also been employed. Applieation of phase-transfer conditions with tetra-n-butylammonium iodide showed marked improvement for the epoxide formation. Furthermore, many complex substituted sulfur ylides have been synthesized and utilized. For instance, stabilized ylide 20 was prepared and treated with a-D-a/lo-pyranoside 19 to furnish a-D-cyclopropanyl-pyranoside 21. Other examples of substituted sulfur ylides include 22-25, among which aminosulfoxonium ylide 25, sometimes known as Johnson s ylide, belongs to another category. The aminosulfoxonium ylides possess the configurational stability and thermal stability not enjoyed by the sulfonium and sulfoxonium ylides, thereby are more suitable for asymmetric synthesis. [Pg.4]

LY311727 is an indole acetic acid based selective inhibitor of human non-pancreatic secretory phospholipase A2 (hnpsPLA2) under development by Lilly as a potential treatment for sepsis. The synthesis of LY311727 involved a Nenitzescu indolization reaction as a key step. The Nenitzescu condensation of quinone 4 with the p-aminoacrylate 39 was carried out in CH3NO2 to provide the desired 5-hydroxylindole 40 in 83% yield. Protection of the 5-hydroxyl moiety in indole 40 was accomplished in H2O under phase transfer conditions in 80% yield. Lithium aluminum hydride mediated reduction of the ester functional group in 41 provided the alcohol 42 in 78% yield. [Pg.150]

Addition of the alcohol 42 to a solution of BF3 Et20/TMSCN in DCM provided the nitrile 43 in 83% yield. Hydrolysis of nitrile 43 then furnished amide 44 in 85% yield. Demethylation of the methoxyindole 44 with BBra in DCM provided the hydroxyindole 45 in 80% yield. This was followed by alkylation of 45 with the bromide 46 under phase transfer conditions to provide the phosphonate ester 47 and subsequent cleavage of the methyl ester by TMS-I furnished trimethylsilyl phosphonic acid 48, which upon alcoholic workup afforded LY311727. [Pg.151]

Reaction of 2-chloromethyl-4//-pyrido[l,2-u]pyrimidine-4-one 162 with various nitronate anions (4 equiv) under phase-transfer conditions with BU4NOH in H2O and CH2CI2 under photo-stimulation gave 2-ethylenic derivatives 164 (01H(55)535). These alkenes 164 were formed by single electron transfer C-alkylation and base-promoted HNO2 elimination from 163. When the ethylenic derivative 164 (R = R ) was unsymmetrical, only the E isomer was isolated. Compound 162 was treated with S-nucleophiles (sodium salt of benzyl mercaptan and benzenesulfinic acid) and the lithium salt of 4-hydroxycoumarin to give compounds 165-167, respectively. [Pg.210]

Far superior yields of l-(arylsulfonyl)-l//-azepines 16 are now available by a one-pot synthesis involving the action of sodium azide on an arylsulfonyl chloride under solid-liquid phase-transfer conditions which prevents the formation of acidic sulfonamides and, hence, the ring-contraction process.75 This procedure also has the advantage of avoiding the use of high pressures and the isolation and handling of the potentially explosive sulfonyl azides. [Pg.142]

Arylsulfonyl)-l//-azepines 16 Using Solid-Liquid Phase-Transfer Conditions General Procedure 75... [Pg.142]

Methylation of indeno[l,2-r/]azepin-4(3//)-one (22) with iodomethane under phase transfer conditions produces the A-methyl derivative, whereas ethylation with Meerwein s reagent yields purple crystals of the indeno[l, 2-r/Jazepine 23, a 147r-aromatic system.57 1 l-Bromo-4-ethoxyin-deno[l,2-r/]azepine (69% mp 143-144°C) can be prepared similarly. [Pg.172]

Generation of the anion of 5,7-diphenyl-5//-dibenz[c,e]azepine (6) under phase-transfer conditions in the presence of air results in oxidation and formation of the dibenz[c,c]azepinol 7 whose structure was confirmed by X-ray crystallography.85... [Pg.281]

Benzodiazepinones are alkylated at N1 with alkyl halides in the presence of aqueous alkali under phase-transfer conditions to give products 2.281... [Pg.426]

Benzodiazepines undergo addition of dichlorocarbene, produced from chloroform and sodium hydroxide under phase-transfer conditions (see Houben-Weyl, Vol. El9b, p 1 523 fif) to give 2H-bisazirino[l,2-a 2, Y-d 1,5]benzodiazepines, e.g. formation of 28.301... [Pg.433]

Af-Methylation of the thienodiazepinedione 1 is achieved by treatment with dimethyl sulfate under phase-transfer conditions (PTC).307... [Pg.437]

It is well known that aziridination with allylic ylides is difficult, due to the low reactivity of imines - relative to carbonyl compounds - towards ylide attack, although imines do react with highly reactive sulfur ylides such as Me2S+-CH2-. Dai and coworkers found aziridination with allylic ylides to be possible when the activated imines 22 were treated with allylic sulfonium salts 23 under phase-transfer conditions (Scheme 2.8) [15]. Although the stereoselectivities of the reaction were low, this was the first example of efficient preparation of vinylaziridines by an ylide route. Similar results were obtained with use of arsonium or telluronium salts [16]. The stereoselectivity of aziridination was improved by use of imines activated by a phosphinoyl group [17]. The same group also reported a catalytic sulfonium ylide-mediated aziridination to produce (2-phenylvinyl)aziridines, by treatment of arylsulfonylimines with cinnamyl bromide in the presence of solid K2C03 and catalytic dimethyl sulfide in MeCN [18]. Recently, the synthesis of 3-alkyl-2-vinyl-aziridines by extension of Dai s work was reported [19]. [Pg.41]

Epoxidation systems based on molybdenum and tungsten catalysts have been extensively studied for more than 40 years. The typical catalysts - MoVI-oxo or WVI-oxo species - do, however, behave rather differently, depending on whether anionic or neutral complexes are employed. Whereas the anionic catalysts, especially the use of tungstates under phase-transfer conditions, are able to activate aqueous hydrogen peroxide efficiently for the formation of epoxides, neutral molybdenum or tungsten complexes do react with hydrogen peroxide, but better selectivities are often achieved with organic hydroperoxides (e.g., TBHP) as terminal oxidants [44, 45],... [Pg.195]

Tricarbonyl(chloro)cyclopentadienylmolybdenum 6 reacts with 3-bromo-l-propene under phase transfer conditions at 45 °C to give directly the dicarbonyl(j)3-2-propenyl) complex 8 whereas at lower temperature the tricarhonyl(>/I-2-propenyl) complex 7 is obtained14. It was proposed that the carbon monoxide acts as the reducing agent. [Pg.446]

In organic synthesis, we know only one interesting case where reactions of arenediazonium ions take place in the presence of a crown ether, but not at all without. It is the azo coupling reaction of 4-methoxybenzenediazonium tetrafluoroborate with pyrroles. Butler and Sheppard (1978) reported that the azo derivatives 11.15 and 11.16 were obtained under phase-transfer conditions (CH2C12 or CHC13 + water) in the presence of dicyclohexano-18-crown-6, but not at all by a published procedure (Kreutzberger and Kalter, 1961). [Pg.302]

The conjugate addition of 103 to phenyl vinyl sulfone (53) proceeds under phase-transfer conditions. The yield of cyclopropanes in the following cyclization is low for synthetic purposes (equation 84)69. [Pg.785]

In a variation of this reaction, alkyl halides can be converted to carbamates, by treatment with a secondary amine and K2CO3 under phase-transfer conditions. ... [Pg.489]

Unsymmetrical as well as symmetrical anhydrides are often prepared by the treatment of an acyl halide with a carboxylic acid salt. The compound C0CI2 has been used as a catalyst. If a metallic salt is used, Na , K , or Ag are the most common cations, but more often pyridine or another tertiary amine is added to the free acid and the salt thus formed is treated with the acyl halide. Mixed formic anhydrides are prepared from sodium formate and an aryl halide, by use of a solid-phase copolymer of pyridine-l-oxide. Symmetrical anhydrides can be prepared by reaction of the acyl halide with aqueous NaOH or NaHCOa under phase-transfer conditions, or with sodium bicarbonate with ultrasound. [Pg.490]


See other pages where Phase-transfer conditions is mentioned: [Pg.90]    [Pg.63]    [Pg.246]    [Pg.42]    [Pg.1306]    [Pg.256]    [Pg.189]    [Pg.632]    [Pg.183]    [Pg.457]   
See also in sourсe #XX -- [ Pg.42 ]

See also in sourсe #XX -- [ Pg.169 ]




SEARCH



© 2024 chempedia.info