Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminum synthesis

Ziegler chemistry processes triethyl aluminum synthesis... [Pg.461]

Akundy GS, Iroh JO (2001) Polypyrrole coatings on aluminum synthesis and characterization. Polymer 42 9665-9669... [Pg.461]

Now the easy part -isolating your product. One of the most attractive features of this new synthesis is that the standard Ai/(Hg) amination mixture must be tediously filtered to separate the product from the spent aluminum hydroxide sludge at this point. The following remedies this most frustrating step and will probably give many a new outlook on the potential of the AI(Hg) reduction. [Pg.107]

Synthesis by high-dilution techniques requires slow admixture of reagents ( 8-24 hrs) or very large volumes of solvents 100 1/mmol). Fast reactions can also be carried out in suitable flow cells (J.L. Dye, 1973). High dilution conditions have been used in the dilactam formation from l,8-diamino-3,6-dioxaoctane and 3,6-dioxaoctanedioyl dichloride in benzene. The amide groups were reduced with lithium aluminum hydride, and a second cyclization with the same dichloride was then carried out. The new bicyclic compound was reduced with diborane. This ligand envelops metal ions completely and is therefore called a cryptand (B. Dietrich, 1969). [Pg.247]

The reaction of esters with Gngnard reagents and with lithium aluminum hydride both useful m the synthesis of alcohols were described earlier They are reviewed m Table 20 4 on page 848... [Pg.846]

The first reported synthesis of acrylonitrile [107-13-1] (qv) and polyacrylonitrile [25014-41-9] (PAN) was in 1894. The polymer received Htde attention for a number of years, until shortly before World War II, because there were no known solvents and the polymer decomposes before reaching its melting point. The first breakthrough in developing solvents for PAN occurred at I. G. Farbenindustrie where fibers made from the polymer were dissolved in aqueous solutions of quaternary ammonium compounds, such as ben2ylpyridinium chloride, or of metal salts, such as lithium bromide, sodium thiocyanate, and aluminum perchlorate. Early interest in acrylonitrile polymers (qv), however, was based primarily on its use in synthetic mbber (see Elastomers, synthetic). [Pg.274]

Hydrofluorocarbons are also prepared from acetylene or olefins and hydrogen fluoride (3), or from chlorocarbons and anhydrous hydrogen fluoride in the presence of various catalysts (3,15). A commercial synthesis of 1,1-difluoroethane, a CFG alternative and an intermediate to vinyl fluoride, is conducted in the vapor phase over an aluminum fluoride catalyst. [Pg.283]

The chlorofluorocarbons react with molten alkah metals and CCI2F2 reacts vigorously with molten aluminum, but with most metals they do not react below 200°C. An exception is the dechlorination of chlorofluorocarbons with two or more carbon atoms in the presence of Zn, Mg, or A1 in polar solvents. A commercial synthesis of chlorotriduoroethylene [79-38-9] employs this reaction ... [Pg.285]

Ketone Synthesis. In the Friedel-Crafts ketone synthesis, an acyl group is iatroduced iato the aromatic nucleus by an acylating agent such as an acyl haUde, acid anhydride, ester, or the acid itself. Ketenes, amides, and nittiles also may be used aluminum chloride and boron ttitiuotide are the most common catalysts (see Ketones). [Pg.557]

Aldehyde Synthesis. Formylation would be expected to take place when formyl chloride or formic anhydride reacts with an aromatic compound ia the presence of aluminum chloride or other Friedel-Crafts catalysts. However, the acid chloride and anhydride of formic acid are both too unstable to be of preparative iaterest. [Pg.559]

Nitrile Synthesis. Cyanogen bromide [506-68-3] condenses with toluene in the presence of aluminum chloride to give -tolunittile (129). [Pg.559]

Although a few simple hydrides were known before the twentieth century, the field of hydride chemistry did not become active until around the time of World War II. Commerce in hydrides began in 1937 when Metal Hydrides Inc. used calcium hydride [7789-78-8J, CaH2, to produce transition-metal powders. After World War II, lithium aluminum hydride [16853-85-3] LiAlH, and sodium borohydride [16940-66-2] NaBH, gained rapid acceptance in organic synthesis. Commercial appHcations of hydrides have continued to grow, such that hydrides have become important industrial chemicals manufactured and used on a large scale. [Pg.297]

The direct synthesis in an aromatic hydrocarbon medium is patented, using a triethyl aluminum catalyst (48) in this case, crystallisa tion of the product from a solvent is not needed. [Pg.305]

The synthesis of 2,4-dihydroxyacetophenone [89-84-9] (21) by acylation reactions of resorcinol has been extensively studied. The reaction is performed using acetic anhydride (104), acetyl chloride (105), or acetic acid (106). The esterification of resorcinol by acetic anhydride followed by the isomerization of the diacetate intermediate has also been described in the presence of zinc chloride (107). Alkylation of resorcinol can be carried out using ethers (108), olefins (109), or alcohols (110). The catalysts which are generally used include sulfuric acid, phosphoric and polyphosphoric acids, acidic resins, or aluminum and iron derivatives. 2-Chlororesorcinol [6201-65-1] (22) is obtained by a sulfonation—chloration—desulfonation technique (111). 1,2,4-Trihydroxybenzene [533-73-3] (23) is obtained by hydroxylation of resorcinol using hydrogen peroxide (112) or peracids (113). [Pg.491]

Knoevenagel condensation of malonic acid with heptaldehyde [111-71-7] followed by ring closure, gives the fragrance y-nonanoic lactone [104-61-0] (6) (14). Beside organic synthesis, malonic acid can also be used as electrolyte additive for anodization of aluminum [7429-90-5] (15), or as additive in adhesive compositions (16). [Pg.466]

The second type of solution polymerization concept uses mixtures of supercritical ethylene and molten PE as the medium for ethylene polymerization. Some reactors previously used for free-radical ethylene polymerization in supercritical ethylene at high pressure (see Olefin POLYMERS,LOW DENSITY polyethylene) were converted for the catalytic synthesis of LLDPE. Both stirred and tubular autoclaves operating at 30—200 MPa (4,500—30,000 psig) and 170—350°C can also be used for this purpose. Residence times in these reactors are short, from 1 to 5 minutes. Three types of catalysts are used in these processes. The first type includes pseudo-homogeneous Ziegler catalysts. In this case, all catalyst components are introduced into a reactor as hquids or solutions but form soHd catalysts when combined in the reactor. Examples of such catalysts include titanium tetrachloride as well as its mixtures with vanadium oxytrichloride and a trialkyl aluminum compound (53,54). The second type of catalysts are soHd Ziegler catalysts (55). Both of these catalysts produce compositionaHy nonuniform LLDPE resins. Exxon Chemical Company uses a third type of catalysts, metallocene catalysts, in a similar solution process to produce uniformly branched ethylene copolymers with 1-butene and 1-hexene called Exact resins (56). [Pg.400]

L-Menthol [2216-51-5] (75) and D-menthol [15356-70-4] have been used as chiral auxiharies in the synthesis of optically active mandehc acids. Reduction of (-)-menthol ben2oylfomiate (76) with a stericaHy bulky reducing agent, ie, sodium bis(2-methylethoxy)aluminum hydride (RED-Al), followed by saponification, yields (R)-mandelic acid (32) of 90% ee. [Pg.246]

Inositols, ie, hexaliydrobenzenehexols, are sugars that have received increasing study and are useful in the treatment of a wide variety of human disorders, including vascular disease, cancer, cirrhosis of the Hver, frostbite, and muscular dystrophy (269). Myoinositol esters prepared by reaction with lower fatty acid anhydrides are useful as Hver medicines and nonionic surfactants the aluminum and ammonium salts of inositol hexasulfate are useful anticancer agents (270). Tetraarjloxybenzoquinones are intermediates in the preparation of dioxazine dyes (266,271). The synthesis of hexakis(aryloxy)benzenes has also beenpubUshed (272). [Pg.391]

The earliest reported reference describing the synthesis of phenylene sulfide stmctures is that of Friedel and Crafts in 1888 (6). The electrophilic reactions studied were based on reactions of benzene and various sulfur sources. These electrophilic substitution reactions were characterized by low yields (50—80%) of rather poorly characterized products by the standards of 1990s. Products contained many by-products, such as thianthrene. Results of self-condensation of thiophenol, catalyzed by aluminum chloride and sulfuric acid (7), were analogous to those of Friedel and Crafts. [Pg.441]

Organoaluminum Compounds. Apphcation of aluminum compounds in organic chemistry came of age in the 1950s when the direct synthesis of trialkylalurninum compounds, particularly triethylalurninum and triisobutylalurninum from metallic aluminum, hydrogen, and the olefins ethylene and isobutylene, made available economic organoalurninum raw materials for a wide variety of chemical reactions (see a-BONDED alkyls and aryls). [Pg.137]

Zeolites. A large and growing industrial use of aluminum hydroxide and sodium alurninate is the manufacture of synthetic zeoHtes (see Molecular sieves). ZeoHtes are aluminosiHcates with Si/Al ratios between 1 and infinity. There are 40 natural, and over 100 synthetic, zeoHtes. AH the synthetic stmctures are made by relatively low (100—150°C) temperature, high pH hydrothermal synthesis. For example the manufacture of the industriaHy important zeoHtes A, X, and Y is generaHy carried out by mixing sodium alurninate and sodium sHicate solutions to form a sodium alurninosiHcate gel. Gel-aging under hydrothermal conditions crystallizes the final product. In special cases, a small amount of seed crystal is used to control the synthesis. [Pg.137]

Uses. Aluminum chloride is used as a catalyst in a wide variety of manufacturing processes, such as the polymerization of light molecular weight hydrocarbons in the manufacture of hydrocarbon resins. Friedel-Crafts reactions (qv) which employ this catalyst are used extensively in the synthesis of agricultural chemicals, pharmaceuticals (qv), detergents, and dyes (12). [Pg.148]

Boehmite (OC-Aluminum Oxide-Hydroxide). Boehmite, the main constituent of bauxite deposits in Europe, is also found associated with gibbsite in tropical bauxites in Africa, Asia, and Austraha. Hydrothemial transformation of gibbsite at temperatures above 150 °C is a common method for the synthesis of weU-cry stalhzed boehmite. Higher temperatures and the presence of alkali increase the rate of transfomiation. Boehmite ciy stals of 5—10 ]liii size (Fig. 3) are produced by tliis method. Fibrous (acicular) boehmite is obtained under acidic hydrothemial conditions (6). Excess water, about 1% to 2% higher than the stoichiometric 15%, is usually found in hydrothemiaHy produced boehmite. [Pg.169]

Diaspore (P-Aluminum Oxide Hydroxide). Diaspore, found in bauxites of Greece, Cliina, and the USSR, can also be obtained by hydrothemial transfomiation of gibbsite and boehmite. Higher (>200°) temperatures and pressure (>15 AlPa-150bar) are needed for synthesis and the presence of diaspore seed cry stals helps to avoid boehmite fomiation. [Pg.169]

Typical values for mf n are 0.5 to 2.5. Gommercially used bases include sodium hydroxide, potassium hydroxide, calcium hydroxide (lime), magnesium hydroxide, sodium carbonate, sodium alurninate, calcium carbonate, or various mixtures. For certain appHcations, PAG can be made from waste grades of aluminum chloride [7446-70-0] such as spent catalyst solutions from Friedel-Grafts synthesis (see Friedel-Grafts reaction). [Pg.179]

Hydroisoquinolines. In addition to the ring-closure reactions previously cited, a variety of reduction methods are available for the synthesis of these important ring systems. Lithium aluminum hydride or sodium in Hquid ammonia convert isoquinoline to 1,2-dihydroisoquinoline (175). Further reduction of this intermediate or reduction of isoquinoline with tin and hydrochloric acid, sodium and alcohol, or catalyticaHy using platinum produces... [Pg.398]

The versatility of lithium aluminum hydride permits synthesis of alkyl, alkenyl, and arylsilanes. Silanes containing functional groups, such as chloro, amino, and alkoxyl in the organic substituents, can also be prepared. Mixed compounds containing both SiCl and SiH cannot be prepared from organopolyhalosilanes using lithium aluminum hydride. Reduction is invariably complete. [Pg.29]

Another synthesis of the cortisol side chain from a C17-keto-steroid is shown in Figure 20. Treatment of a C3-protected steroid 3,3-ethanedyidimercapto-androst-4-ene-ll,17-dione [112743-82-5] (144) with a tnhaloacetate, 2inc, and a Lewis acid produces (145). Addition of a phenol and potassium carbonate to (145) in refluxing butanone yields the aryl vinyl ether (146). Concomitant reduction of the C20-ester and the Cll-ketone of (146) with lithium aluminum hydride forms (147). Deprotection of the C3-thioketal, followed by treatment of (148) with y /(7-chlotopetben2oic acid, produces epoxide (149). Hydrolysis of (149) under acidic conditions yields cortisol (29) (181). [Pg.434]


See other pages where Aluminum synthesis is mentioned: [Pg.185]    [Pg.185]    [Pg.348]    [Pg.164]    [Pg.328]    [Pg.366]    [Pg.210]    [Pg.234]    [Pg.304]    [Pg.305]    [Pg.323]    [Pg.499]    [Pg.197]    [Pg.14]    [Pg.505]    [Pg.59]    [Pg.162]    [Pg.293]    [Pg.432]    [Pg.436]   
See also in sourсe #XX -- [ Pg.2 , Pg.45 ]




SEARCH



1,2-Amino alcohols, synthesis, lithium aluminum hydride

Acylated indole synthesis, aluminum chloride

Alcohols synthesis, lithium aluminum hydride

Aldehydes alcohol synthesis, lithium aluminum hydride

Aluminum Reagents in Selective Organic Synthesis

Aluminum alkoxides synthesis

Aluminum alkyls direct synthesis

Aluminum complexes synthesis

Aluminum compounds natural products synthesis

Aluminum compounds nitrile synthesis

Aluminum economical synthesis

Aluminum enolates synthesis

Aluminum hydrides synthesis

Aluminum in Organic Synthesis

Aluminum nitride powders, combustion synthesis

Aluminum porphyrins synthesis

Aluminum, crotylreaction with imines synthesis

Aluminum, diethylenolates regioselective synthesis

Aluminum, hydridodiisobutylaluminum enolates synthesis

Aluminum-based metal -organic frameworks synthesis

Anhydrides alcohol synthesis, lithium aluminum hydride

Esters alcohol synthesis, lithium aluminum hydride

Ketones synthesis of aluminum enolates

Lithium aluminum hydride alcohol synthesis from acid chlorides

Lithium aluminum hydride alcohol synthesis from epoxides

Lithium aluminum hydride alcohol synthesis from esters

Lithium aluminum hydride diastereoselective synthesis

Lithium aluminum hydride enantioselective synthesis

Lithium aluminum hydride synthesis

Reductions alcohol synthesis, lithium aluminum hydride

Sodium bis aluminum hydride allylic alcohol synthesis

Syntheses using aluminum alkyls

Synthesis aluminum halides

Synthesis and Processing of Aluminum Nitride

Synthesis of Aluminum Oxynitride in Air

Titanium-aluminum synthesis

Toxicity, aluminum synthesis

© 2024 chempedia.info