Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Raffinate Recovery

Compound Concentration Level (pg/L) No. of Experiments Trap 1 Trap 2 Trap 3 Totala Mean Raffinate Recoveries (%)a... [Pg.479]

Phenol (carbolic acid) is used in refineries to convert heavy, waxy distillates obtained from crude oU distillation into lubricating oils. As a rule, aU components in the treating and raffinate recovery sections, except tubes in water-cooled heat exchangers, are made from carbon steel. If water is not present, few significant corrosion problems can be expected to occur in these sections. [Pg.13]

The extract is vacuum-distilled ia the solvent recovery column, which is operated at low bottom temperatures to minimise the formation of polymer and dimer and is designed to provide acryUc acid-free overheads for recycle as the extraction solvent. A small aqueous phase in the overheads is mixed with the raffinate from the extraction step. This aqueous material is stripped before disposal both to recover extraction solvent values and minimise waste organic disposal loads. [Pg.154]

The bottoms from the solvent recovery (or a2eotropic dehydration column) are fed to the foremns column where acetic acid, some acryflc acid, and final traces of water are removed overhead. The overhead mixture is sent to an acetic acid purification column where a technical grade of acetic acid suitable for ester manufacture is recovered as a by-product. The bottoms from the acetic acid recovery column are recycled to the reflux to the foremns column. The bottoms from the foremns column are fed to the product column where the glacial acryflc acid of commerce is taken overhead. Bottoms from the product column are stripped to recover acryflc acid values and the high boilers are burned. The principal losses of acryflc acid in this process are to the aqueous raffinate and to the aqueous layer from the dehydration column and to dimeri2ation of acryflc acid to 3-acryloxypropionic acid. If necessary, the product column bottoms stripper may include provision for a short-contact-time cracker to crack this dimer back to acryflc acid (60). [Pg.154]

Benzene, toluene, and a mixed xylene stream are subsequently recovered by extractive distillation using a solvent. Recovery ofA-xylene from a mixed xylene stream requires a further process step of either crystallization and filtration or adsorption on molecular sieves. o-Xylene can be recovered from the raffinate by fractionation. In A" xylene production it is common to isomerize the / -xylene in order to maximize the production of A xylene and o-xylene. Additional benzene is commonly produced by the hydrodealkylation of toluene to benzene to balance supply and demand. Less common is the hydrodealkylation of xylenes to produce benzene and the disproportionation of toluene to produce xylenes and benzene. [Pg.175]

IFP Process for 1-Butene from Ethylene. 1-Butene is widely used as a comonomer in the production of polyethylene, accounting for over 107,000 t in 1992 and 40% of the total comonomer used. About 60% of the 1-butene produced comes from steam cracking and fluid catalytic cracker effluents (10). This 1-butene is typically produced from by-product raffinate from methyl tert-huty ether production. The recovery of 1-butene from these streams is typically expensive and requires the use of large plants to be economical. Institut Francais du Petrole (IFP) has developed and patented the Alphabutol process which produces 1-butene by selectively dimerizing ethylene. [Pg.440]

The purified acid is recovered from the loaded organic stream by contacting with water in another countercurrent extraction step. In place of water, an aqueous alkafl can be used to recover a purified phosphate salt solution. A small portion of the purified acid is typically used in a backwashing operation to contact the loaded organic phase and to improve the purity of the extract phase prior to recovery of the purified acid. Depending on the miscibility of the solvent with the acid, the purified acid and the raffinate may be stripped of residual solvent which is recycled to the extraction loop. The purified acid can be treated for removal of residual organic impurities, stripped of fluoride to low (10 ppm) levels, and concentrated to the desired P2 s Many variations of this basic scheme have been developed to improve the extraction of phosphate and rejection of impurities to the raffinate stream, and numerous patents have been granted on solvent extraction processes. [Pg.328]

In general, the sulfolane extraction unit consists of four basic parts extractor, extractive stripper, extract recovery column, and water—wash tower. The hydrocarbon feed is first contacted with sulfolane in the extractor, where the aromatics and some light nonaromatics dissolve in the sulfolane. The rich solvent then passes to the extractive stripper where the light nonaromatics are stripped. The bottom stream, which consists of sulfolane and aromatic components, and which at this point is essentiaHy free of nonaromatics, enters the recovery column where the aromatics are removed. The sulfolane is returned to the extractor. The non aromatic raffinate obtained initially from the extractor is contacted with water in the wash tower to remove dissolved sulfolane, which is subsequently recovered in the extract recovery column. Benzene and toluene recoveries in the process are routinely greater than 99%, and xylene recoveries exceed 95%. [Pg.69]

Superffex C t lytic Crocking. A new process called Superflex is being commercialized to produce predorninantiy propylene and butylenes from low valued hydrocarbon streams from an olefins complex (74). In this process, raffinates (from the aromatics recovery unit and the B—B stream after the recovery of isobutylene) and pyrolysis gasoline (after the removal of the C —Cg aromatics fraction) are catalyticaHy cracked to produce propylene, isobutylene, and a cmde C —Cg aromatics fraction. AH other by-products are recycled to extinction. [Pg.368]

Solvent solubility. A low solubility of extrac tion solvent in the raffinate generally leads to a high relative volatihty in a raffinate stripper or a low solvent loss if the raffinate is not desolventized. A low solubility of feed solvent in the extract leads to a high relative separation and, generally, to low solute-recovery costs. [Pg.1453]

Lube oil extraction plants often use phenol as solvent. Phenol is used because of its solvent power with a wide range of feed stocks and its ease of recovery. Phenol preferentially dissolves aromatic-type hydrocarbons from the feed stock and improves its oxidation stability and to some extent its color. Phenol extraction can be used over the entire viscosity range of lube distillates and deasphalted oils. The phenol solvent extraction separation is primarily by molecular type or composition. In order to accomplish a separation by solvent extraction, it is necessary that two liquid phases be present. In phenol solvent extraction of lubricating oils these two phases are an oil-rich phase and a phenol-rich phase. Tne oil-rich phase or raffinate solution consists of the "treated" oil from which undesirable naphthenic and aromatic components have been removed plus some dissolved phenol. The phenol-rich phase or extract solution consists mainly of the bulk of the phenol plus the undesirable components removed from the oil feed. The oil materials remaining... [Pg.231]

The cyclic steady state SMB performance is characterized by four parameters purity, recovery, solvent consumption, and adsorbent productivity. Extract (raffinate) purity is the ratio between the concentration of the more retained component (less retained) and the total concentration of the two species in the extract (raffinate). The recovery is the amount of the target species obtained in the desired product stream per total amount of the same species fed into the system. Solvent consumption is the total amount of solvent used (in eluent and feed) per unit of racemic amount treated. Productivity is the amount of racemic mixture treated per volume of adsorbent bed and per unit of time. [Pg.235]

The equivalent TMB operating conditions and model parameters for the reference case were given in Table 9-1 and Fig. 9-9 presents the corresponding steady state internal concentration profdes obtained with the simulation package. The extract and raffinate purities were 97.6 % and 99.3 %, respectively the recoveries were 99.3 % and 97.6 % for the extract and raffinate streams. The solvent consumption was 1.19 L g and the productivity was 68.2 g/day - L of bed. [Pg.236]

Increasing the switch time interval is equivalent to decrease the solid flow rate and the net fluxes of components in all sections of the TMB unit will be pushed in the same direction of the liquid phase. This implies that, first, the more retained species will move upwards in section III and will contaminate the raffinate stream and the less retained species will move upwards in section IV, will be recycled to section I, and will contaminate also the extract stream. The decrease of the switch time interval will have similar consequences. The equivalent solid flow rate will increase and the net fluxes of component in all four sections of the TMB unit will be pushed in the opposite direction of the liquid phase. This implies that, first, the less-retained species will move downwards in section II and will contaminate the extract stream and the more retained component will also move downwards in section I, will be recycled with the solid to the section IV, and will contaminate the raffinate stream. It is possible to obtain simultaneously high purities and recoveries in a SMB, but the tuning must be carefully carried out. [Pg.237]

After extraction, the loaded solvent contains 6 g T1 zirconium as zirconium oxide with 0.2% hafnium oxide. The raffinate is left with 0.2 to 0.3 g l l of the oxides of zirconium and hafnium of this, 70-90% is hafnium oxide. This raffinate can act as a feed solution for the recovery of pure hafnium oxide. The loaded extractant, on the other hand, is subjected to a scrubbing operation with pure zirconium sulfate solution to eliminate any co-extracted hafnium. This scrubbing operation is essentially a displacement reaction ... [Pg.526]

Partition ratio this is the weight fraction of the solute in the extract divided by the weight fraction in the raffinate. This determines the quantity of solvent needed. The less solvent needed the lower will be the solvent and solvent recovery costs. [Pg.617]

The styrene concentrate is fed to a solvent recovery process or an extractive distillation process. The solvent selectively pulls the styrene out of the hydrocarbon mixture. The styrene raffinate, sans styrene, is sent back to be mixed with the pygas (although it can also be fractionated to pull out a high quality mixed xylene.)... [Pg.130]

The second desorbent characteristic is that the desorbent material must be compatible with both the particular adsorbent and the feed mixture. Specifically, the desorbent must not reduce the capacity of the adsorbent or normal paraffin selectivity with respect to the raffinate components. Additionally, desorbent materials must not react with any feed component Both the extract stream and the raffinate streams consist of a mixture of feed components with desorbent and any chemical reaction prevent product recovery. [Pg.254]

Returning to the example shown in Table 8.1, it is intuitively obvious that the low degree of extraction achieved when using a phase ratio 0 = 0.1 could be improved if the raffinate could be reextracted with fresh solvent, and that if this reextraction were to be carried out at the same phase ratio, the second extract would show a similar purity. The first and second extracts could then be combined to give overall a better recovery than could be achieved in a single stage. [Pg.347]

Clearly, it would be preferable from the point of view of the purity of the product if there were high concentrations of A in both the extract and the raffinate of a stage. This can be achieved in countercurrent extraction, which allows both high recovery and the achievement of high product purity when properly designed. [Pg.350]

The potassium penicillin is recovered by filtration and the solvent recirculated. Recovery of the organic phase from the aqueous raffinate is also very important to minimize costs and environmental impact. Butyl acetate, being a low-boiling solvent, can be recovered easily by distillation. [Pg.432]

In the commercial flow sheets, these elements are left in the aqueous raffinate after platinum and palladium extraction. Indium can be extracted in the -l-IV oxidation state by amines (see Fig. 11.11), or TBP (see Figs. 11.10 and 11.12). However, although the separation from rhodium is easy, the recovery of iridium may not be quantitative because of the presence of nonextractable iridium halocomplexes in the feed solution. Dhara [37] has proposed coextraction of iridium, platinum, and palladium by a tertiary amine and the selective recovery of the iridium by reduction to Ir(III). Iridium can also be separated from rhodium by substituted amides [S(Ir/ Rh) 5 X 10 ). [Pg.495]

An increase in the amount of solvent gives a greater recovery of solute but produces a more dilute extract. In order to meet the criteria of a reasonable concentrated extract and a high recovery of solute from the raffinate phase, it is best to employ multi-stage countercurrent contacting (as shown in Figure 15). This is the best way of obtaining separations on a continuous flow basis. [Pg.157]


See other pages where Raffinate Recovery is mentioned: [Pg.191]    [Pg.1147]    [Pg.29]    [Pg.29]    [Pg.29]    [Pg.29]    [Pg.191]    [Pg.1147]    [Pg.29]    [Pg.29]    [Pg.29]    [Pg.29]    [Pg.296]    [Pg.328]    [Pg.311]    [Pg.1448]    [Pg.1449]    [Pg.2001]    [Pg.322]    [Pg.105]    [Pg.243]    [Pg.279]    [Pg.255]    [Pg.233]    [Pg.233]    [Pg.22]    [Pg.23]    [Pg.419]    [Pg.980]    [Pg.334]   


SEARCH



Raffinate

Raffinate, solvent recovery from

Raffinates

Raffination

© 2024 chempedia.info