Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radium-226, measurement Radon

Radium is chemically similar to barium it displays a characteristic optical spectrum its salts exhibit phosphorescence in the dark, a continual evolution of heat taking place sufficient in amount to raise the temperature of 100 times its own weight of water 1°C every hour and many remarkable physical and physiological changes have been produced. Radium shows radioactivity a million times greater than an equal weight of uranium and. unlike polonium, suffers no measurable loss of radioactivity over a short period of time (its half life is 1620 years). From solutions of radium salts, there is separable a radioactive gas radium emanation, radon, which is a chemically ineit gas similai to xenon and disintegrates with a half life of 3.82 days, with the simultaneous formation of another radioactive element, Radium A (polonium-218). [Pg.1406]

Early experiments in liquids were quite variable for many reasons. The conductivity technique, which was used in the gas phase to measure dose, was not applicable to the liquid phase. Reactions were measured using dissolved radium salts or radon gas as the ionization source. Some thought the chemistry was due to the reactions with radium however, it was soon recognized that it was the emitted rays that caused the decomposition. Both radium and radon could cause radiation damage. Because the radon would be partitioned between the gas and liquid phase, the amount of energy that was deposited in the liquid depended critically on the experimental conditions such as the pressure and amount of headspace above the liquid. In addition, because the sources were weak, long irradiation times were necessary and products, such as hydrogen peroxide, could decompose. [Pg.5]

A key issue when comparing different techniques for measuring SGD is the need to define the fluid composition that each method is measuring (i.e., fresh, saline, or brackish SGD). For example, whereas hydrogeological techniques are estimates of fresh SGD, the radium and radon methods include a component of recirculated seawater. Therefore, it is often not possible to directly compare the utility of these techniques. Instead, they should be regarded as complementary. [Pg.470]

Advective flux measurements can be conducted using seepage meter, piezometer, dye tracers, and radium or radon isotopes. [Pg.572]

The accuracy of any measurement will depend upon the calibration of the instrument used. The calibration of an instrument determines its response to a known amount or concentration of radioactivity. This allows a correlation to be made between the instrument reading and the actual amount or concentration present. A range of activities of radium-226 standard reference materials (SRM) is available from the U.S. Department of Commerce, National Bureau of Standards (NBS) as solutions for calibrating detection systems. Also, an elevated radon atmosphere may be produced in a chamber, and samples drawn and measured in systems previously calibrated by radon emanation from an NBS radium-226 SRM. Other radon detectors may then be filled from or exposed in the chamber and standardized based on this "secondary" standard (NCRP 1988). Analytical methods for measuring radon in environmental samples are given in Table 6-2. These methods provide indirect measurements of radon i.e., the activity emitted from radon and radon progeny is detected and quantitied. [Pg.100]

Given the simultaneous presence of radium and radon in water, the individual concentrations can be calculated by determining the residual activity. If the measurement is taken immediately after sampling, the result obtained indicates the radon content After 30 days and following renewed... [Pg.452]

In the first stage, suitable radon exposure chambers have modified, by the accepted life system for the Rabbits. Exposure chamber installed inside Biophysics laboratory in School of Physics / Universiti Sains Malaysia, it consists four sources of Radium ( Ra), electric fan to simulate indoor air radon, six radon dosimeters equipped with the CR-39NTDS, one radiation dosimeter to measure radiation dose inside the chamber, RAD7 to measure radon concentration to short measurements, as shown in Fig.l. [Pg.312]

In U.S. EPA Office of Radiation Program s New House Evaluation Program (NEWHEP), two builders in the Denver area, two in Colorado Springs, and one in Southfield, Michigan, installed various radon-resistant features in houses during construction. A sampling of subsequent measurements of indoor radon, adjacent soil gas radon, and soil radium content is summarized in Table 31.6.36... [Pg.1291]

Factors influencing the production and migration of radon in soils have been examined, and various sources of geographic data have been discussed. Two significant soil characteristics include air permeability and, less importantly, radium concentration. While there are, at present, few opportunities to compare the larger-scale data with on-site field measurements, those comparisons that have been made for both surface radium concentrations and air permeability of soils show a reasonable correspondence. Further comparisons between the aerial radiometric data and surface measurements are needed. Additional work and experience with SCS information on soils will improve the confidence in the permeability estimates, as will comparisons between the estimated permeabilities and actual air permeability measurements performed in the field. [Pg.33]

The subsoil is the principal source of radon in this house. Both the activity concentration of radium-226 in subsoil and of radon in soil gas are above levels for building ground that might result in significant indoor radon concentrations. The radon decay-product concentration in the dwelling before remedial measures were taken was substantially higher than the reference value of 120 mWL. [Pg.557]

Key et al. [27] have described improved methods for the measurement of radon and radium in seawater and marine sediments using manganese dioxide impregnated fibres. The basic method that these workers used was that of Broecker [28]. Seawater samples were taken in 30 litre Niskin bottles. [Pg.347]

Radon s main use is as a short-lived source of radioactivity for medical purposes. It is collected from the decay of radium as a gas and sealed in small glass capsules that are then inserted at the site of the cancer. It is also used to trace leaks in gas and liquid pipelines and to measure their rate of flow. The rate at which radon gas escapes from the Earth is one measurement that helps scientists predict earthquakes. [Pg.273]

In the environment, thorium and its compounds do not degrade or mineralize like many organic compounds, but instead speciate into different chemical compounds and form radioactive decay products. Analytical methods for the quantification of radioactive decay products, such as radium, radon, polonium and lead are available. However, the decay products of thorium are rarely analyzed in environmental samples. Since radon-220 (thoron, a decay product of thorium-232) is a gas, determination of thoron decay products in some environmental samples may be simpler, and their concentrations may be used as an indirect measure of the parent compound in the environment if a secular equilibrium is reached between thorium-232 and all its decay products. There are few analytical methods that will allow quantification of the speciation products formed as a result of environmental interactions of thorium (e.g., formation of complex). A knowledge of the environmental transformation processes of thorium and the compounds formed as a result is important in the understanding of their transport in environmental media. For example, in aquatic media, formation of soluble complexes will increase thorium mobility, whereas formation of insoluble species will enhance its incorporation into the sediment and limit its mobility. [Pg.122]

Gross alpha and gross beta activity can be determined by various radioactive counters, such as internal proportional, alpha scintillation, and Geiger counters. Radium in water can be measured by co-precipitating with barium sulfate followed by counting alpha particles. Radium-226 can be measured from alpha counting of radon-222. Various methods are well documented (APHA, AWWA, and WEF 1998. Standard Methods for the Examination of Water and Wastewater, 20 ed. Washington DC American Public Health Association). [Pg.786]

Another procedure is based on the measurement of the radioactive isotope radon-222 (half-life 3.8 days), the decay product of natural radium-226. At the bottom of lakes and oceans, radon diffuses from the sediment to the overlying water where it is transported upward by turbulence. Broecker (1965) was among the first to use the vertical profile of 222Rn in the deep sea to determine vertical turbulent diffusivity in the ocean. [Pg.1029]

There are few medical tests to determine if you have been exposed to radium. There is a urine test to determine if you have been exposed to a source of radioactivity such as radium. There is also a test to measure the amount of radon, a breakdown product of radium, when it is exhaled. These tests require special equipment and cannot be done in a doctor s office. Another test can measure the total amount of radioactivity in the body however, this test is not used except in special cases of high exposure. [Pg.21]

A method has been developed to measure the rate of elimination of radon in exhaled breath (Stehney et al. 1955). Based on the assumption that 70% of the radon from fixed body radium is exhaled, this test can be used to calculate approximate levels of the body burden of radium. [Pg.65]

Whether in the environment or in the human body, uranium will undergo radioactive decay to form a series of radioactive nuclides that end in a stable isotope of lead (see Chapter 3). Examples of these include radioactive isotopes of the elements thorium, radium, radon, polonium, and lead. Analytical methods with the required sensitivity and accuracy are also available for quantification of these elements in the environment where large sample are normally available (EPA 1980,1984), but not necessarily for the levels from the decay of uranium in the body. More sensitive analytical methods are needed for accurately measuring very low levels of these radionuclides. [Pg.332]


See other pages where Radium-226, measurement Radon is mentioned: [Pg.1282]    [Pg.347]    [Pg.65]    [Pg.30]    [Pg.2203]    [Pg.211]    [Pg.454]    [Pg.4130]    [Pg.386]    [Pg.17]    [Pg.60]    [Pg.22]    [Pg.27]    [Pg.38]    [Pg.213]    [Pg.561]    [Pg.1650]    [Pg.178]    [Pg.107]    [Pg.787]    [Pg.824]    [Pg.1696]    [Pg.66]    [Pg.358]    [Pg.2]    [Pg.443]    [Pg.283]    [Pg.2176]    [Pg.24]   
See also in sourсe #XX -- [ Pg.222 , Pg.447 , Pg.448 , Pg.449 , Pg.450 , Pg.451 , Pg.452 , Pg.453 , Pg.454 , Pg.455 , Pg.456 ]




SEARCH



Radium

Radium and radon measurements in seawater

Radium-226, measurement

© 2024 chempedia.info