Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Propylene oxide, basicity

Propylene oxide-based glycerol can be produced by rearrangement of propylene oxide [75-56-9] (qv) to allyl alcohol over triUthium phosphate catalyst at 200—250°C (yield 80—85%) (4), followed by any of the appropriate steps shown in Figure 1. The specific route commercially employed is peracetic acid epoxidation of allyl alcohol to glycidol followed by hydrolysis to glycerol (5). The newest international synthesis plants employ this basic scheme. [Pg.347]

Polyester resins can also be rapidly formed by the reaction of propylene oxide (5) with phthaUc and maleic anhydride. The reaction is initiated with a small fraction of glycol initiator containing a basic catalyst such as lithium carbonate. Molecular weight development is controlled by the concentration of initiator, and the highly exothermic reaction proceeds without the evolution of any condensate water. Although this technique provides many process benefits, the low extent of maleate isomerization achieved during the rapid formation of the polymer limits the reactivity and ultimate performance of these resins. [Pg.314]

Ethoxylation and Propoxylation. Ethylene oxide [75-21-8] or propylene oxide [75-56-9] add readily to primary fatty amines to form bis(2-hydroxyethyl) or bis(2-hydroxypropyl) tertiary amines secondary amines also react with ethylene or propylene oxide to form 2-hydroxyalkyl tertiary amines (1,3,7,33—36). The initial addition is completed at approximately 170°C. Additional ethylene or propylene oxide can be added by using a basic catalyst, usually sodium or potassium hydroxide. [Pg.219]

Propylene oxide [75-56-9] (methyloxirane, 1,2-epoxypropane) is a significant organic chemical used primarily as a reaction intermediate for production of polyether polyols, propylene glycol, alkanolamines (qv), glycol ethers, and many other useful products (see Glycols). Propylene oxide was first prepared in 1861 by Oser and first polymerized by Levene and Walti in 1927 (1). Propylene oxide is manufactured by two basic processes the traditional chlorohydrin process (see Chlorohydrins) and the hydroperoxide process, where either / fZ-butanol (see Butyl alcohols) or styrene (qv) is a co-product. Research continues in an effort to develop a direct oxidation process to be used commercially. [Pg.133]

Propylene oxide and carboxyUc acids ia equimolar ratios produce monoesters of propylene glycol. Higher ratios of oxide to acid produce polypropylene glycol monoesters. In the presence of basic catalysts these monoesters can undergo transesterification reactions that yield a product mixture of propylene glycols, monoesters, and diesters (57,60). [Pg.135]

Hydrogen Sulfide andMercaptans. Hydrogen sulfide and propylene oxide react to produce l-mercapto-2-propanol and bis(2-hydroxypropyl) sulfide (69,70). Reaction of the epoxide with mercaptans yields 1-aLkylthio- or l-arylthio-2-propanol when basic catalysis is used (71). Acid catalysts produce a mixture of primary and secondary hydroxy products, but ia low yield (72). Suitable catalysts iaclude sodium hydroxide, sodium salts of the mercaptan, tetraaLkylammonium hydroxide, acidic 2eohtes, and sodium salts of an alkoxylated alcohol or mercaptan (26,69,70,73,74). [Pg.135]

Hydroperoxide Process. The hydroperoxide process to propylene oxide involves the basic steps of oxidation of an organic to its hydroperoxide, epoxidation of propylene with the hydroperoxide, purification of the propylene oxide, and conversion of the coproduct alcohol to a useful product for sale. Incorporated into the process are various purification, concentration, and recycle methods to maximize product yields and minimize operating expenses. Commercially, two processes are used. The coproducts are / fZ-butanol, which is converted to methyl tert-huty ether [1634-04-4] (MTBE), and 1-phenyl ethanol, converted to styrene [100-42-5]. The coproducts are produced in a weight ratio of 3—4 1 / fZ-butanol/propylene oxide and 2.4 1 styrene/propylene oxide, respectively. These processes use isobutane (see Hydrocarbons) and ethylbenzene (qv), respectively, to produce the hydroperoxide. Other processes have been proposed based on cyclohexane where aniline is the final coproduct, or on cumene (qv) where a-methyl styrene is the final coproduct. [Pg.138]

Methyl formate and propylene oxide have close boiling poiats, making separation by distillation difficult. Methyl formate is removed from propylene oxide by hydrolysis with an aqueous base and glycerol, followed by phase separation and distillation (152,153). Methyl formate may be hydrolyzed to methanol and formic acid by contacting the propylene oxide stream with a basic ion-exchange resia. Methanol and formic acid are removed by extractive distillation (154). [Pg.139]

All lene Oxides and Aziridines. Alkyleneamines react readily with epoxides, such as ethylene oxide [75-21-8] (EO) or propylene oxide [75-56-9] (PO), to form mixtures of hydroxyalkyl derivatives. Product distribution is controlled by the amine to epoxide mole ratio. If EDA, which has four reactive amine hydrogens, reacts at an EDA to EO mole ratio which is greater than 1 4, a mixture of mono-, di-, tri,-, and tetrahydroxyethyl derivatives of EDA are formed. A 10 1 EDA EO feed mole ratio gives predominandy 2-hydroxyethylethylenediamine [111-41-1], the remainder is a mixture of bis-(2-hydroxyethyl)ethylenediamines (7). If the reactive NH to epoxide feed mole ratio is less than one and, additionally, a strong basic catalyst is used, then oxyalkyl derivatives, like those shown for EDA and excess PO result (8,9). [Pg.41]

Freeder, B. G. et al., J. Loss Prev. Process Ind., 1988, 1, 164-168 Accidental contamination of a 90 kg cylinder of ethylene oxide with a little sodium hydroxide solution led to explosive failure of the cylinder over 8 hours later [1], Based on later studies of the kinetics and heat release of the poly condensation reaction, it was estimated that after 8 hours and 1 min, some 12.7% of the oxide had condensed with an increase in temperature from 20 to 100°C. At this point the heat release rate was calculated to be 2.1 MJ/min, and 100 s later the temperature and heat release rate would be 160° and 1.67 MJ/s respectively, with 28% condensation. Complete reaction would have been attained some 16 s later at a temperature of 700°C [2], Precautions designed to prevent explosive polymerisation of ethylene oxide are discussed, including rigid exclusion of acids covalent halides, such as aluminium chloride, iron(III) chloride, tin(IV) chloride basic materials like alkali hydroxides, ammonia, amines, metallic potassium and catalytically active solids such as aluminium oxide, iron oxide, or rust [1] A comparative study of the runaway exothermic polymerisation of ethylene oxide and of propylene oxide by 10 wt% of solutions of sodium hydroxide of various concentrations has been done using ARC. Results below show onset temperatures/corrected adiabatic exotherm/maximum pressure attained and heat of polymerisation for the least (0.125 M) and most (1 M) concentrated alkali solutions used as catalysts. [Pg.315]

Hydroxypropylcellulose (HPC) is a thermoplastic nonionic cellulose ester that is soluble in both water and a number of organic liquids. It is synthesized through reaction of the basic cellulose slurried with propylene oxide. [Pg.271]

Propylene oxide in the amount of 5000 tons/yr will be made by the chlorohydrin process. The basic feed material is a hydrocarbon mixture containing 90% propylene and the balance propane which does not react. This material is diluted with spent gas from the process to provide a net feed to chlorination which contains 40 mol % propylene. Chlorine gas contains 3% each of air and carbon dioxide as contaminants. [Pg.34]

Peroxide and hydroperoxide ions. A patent disclosure h Barueoh and Payne101 has described addition of teri-bntylliydi- peroxide to ethylene oxide, propylene oxide, and isobutylene oxide in ether, in the presence of either basic or acidic catalysts. The <°rt-Imtylperoxide ion, like other nucleophiles, apparently prefers to uttar. c... [Pg.221]

The reaction of sucrose with propylene oxide in aqueous basic medium affords 2-hydroxypropyl ethers.76 Similar conditions gave sucrose glycerol-sucrose hybrids by reaction with glycidol.77 Polymeric resins are obtained, starting from sucrose or partially esterified sucrose, when diepoxides are used.78,79... [Pg.225]

Etherification with epoxides, such as ethylene oxide or propylene oxide, in aqueous medium in the presence of a basic catalyst yields O-hydroxyalkyl derivatives (11, 12) (Figure 5.6). The degree of substitution varies with the amount of epoxide ranging from 0.1 to 2. As the chain length of the epoxide increases, the water solubility decreases however, small amounts of 2-propanol increase the solubility. [Pg.78]

Propylene Oxide. Propylene oxide is another basic chemical used in manufacturing intermediates for urethane foams (cushioning and insulation), coatings, brake fluids, hydraulic fluids, quenchants, and many other end uses.23 The classic industrial synthesis of this chemical has been the reaction of chlorine with propylene to produce the chloro-hydrin followed by dehydrochlorination with caustic to produce the alkylene oxide, propylene oxide, plus salt. [Pg.77]

The largest-volume polyether used is obtained from propylene oxide polymerized under basic conditions. Polyester polyols are produced from a number of different materials involving diacids and diols to give the ester linkage. Aliphatic polyesters generally are used for elastomers to impart chain flexibility. [Pg.711]


See other pages where Propylene oxide, basicity is mentioned: [Pg.251]    [Pg.134]    [Pg.134]    [Pg.135]    [Pg.543]    [Pg.541]    [Pg.63]    [Pg.381]    [Pg.18]    [Pg.203]    [Pg.448]    [Pg.595]    [Pg.597]    [Pg.427]    [Pg.47]    [Pg.290]    [Pg.298]    [Pg.404]    [Pg.198]    [Pg.251]    [Pg.41]    [Pg.241]    [Pg.249]    [Pg.77]    [Pg.85]    [Pg.215]    [Pg.316]    [Pg.207]    [Pg.714]   
See also in sourсe #XX -- [ Pg.6 ]




SEARCH



Basic oxidation

Basic oxide

Propylene oxide

Propylene oxide oxidation

© 2024 chempedia.info