Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Covalent halides

Davis introduced some complimentary strategies for the synthesis of functional ionic liquids, by the inclusion of functional group (FG) to the cationic skeleton, in his review (Davis, 2004). The called "task-specific ionic liquids" have been synthesized, for example, by N-alkylation of alkyl halides covalently linked to FG with appropriate Lewis bases (e.g., imidazole, amine, phosphine, and sulfide Scheme 2a), accompanied by the anion metathesis to realize ionic liquids. One of other strategies is to use Michael reaction of alkyl vinyl ketones linked to FG with tertiary cations, as in Scheme 2b (Wasserscheid et al., 2003). It is noteworthy that this facile one-pot reaction dispenses with the need for a further anion metathesis step and are free from haUde-containing by-product. [Pg.729]

Mercury(II) chloride, HgC, corrosive sublimate, m.p. 280 C, b.p. 302"C. Essentially covalent material (Hg plus CL Hg plus aqua regia). Forms complex halide ions, e.g. (HgCU) (HgCL)" in excess HCl and forms complexes. Very poisonous. [Pg.254]

PPha, pyridine) organic groups (olefines, aromatic derivatives) and also form other derivatives, e.g. halides, hydrides, sulphides, metal cluster compounds Compounds containing clusters of metal atoms linked together by covalent (or co-ordinate) bands, metaldehyde, (C2H40) ( = 4 or 6). A solid crystalline substance, sublimes without melting at I12 1I5" C stable when pure it is readily formed when elhanal is left in the presence of a catalyst at low temperatures, but has unpredictable stability and will revert to the monomer, ft is used for slug control and as a fuel. [Pg.257]

The unequal distribution of charge produced when elements of different electronegativities combine causes a polarity of the covalent bond joining them and, unless this polarity is balanced by an equal and opposite polarity, the molecule will be a dipole and have a dipole moment (for example, a hydrogen halide). Carbon tetrachloride is one of a relatively few examples in which a strong polarity does not result in a molecular dipole. It has a tetrahedral configuration... [Pg.51]

Metals in higher oxidation states form halides which are essentially covalent, for example AICI3, SnCl, FeClj when these compounds dissolve in water they do so by a strongly exothermic process. Indeed it is perhaps incorrect to think of this only as a dissolution process, since it is more like a chemical reaction—but to differentiate for a particular substance is not easy, as we shall see. The steps involved in the case of aluminium chloride can be represented as... [Pg.80]

As a consequence of the high ionisation energy of beryllium its halides are essentially covalent, with comparatively low m.p.. the melts being non-conducting and (except beryllium fluoride) dissolving in many organic solvents. [Pg.128]

All the other aluminium halides are covalently bonded with aluminium showing a coordination number of four towards these larger halogen atoms. The four halogen atoms arrange themselves approximately tetrahedrally around the aluminium and dimeric molecules are produced with the configuration given below ... [Pg.153]

All Group IV elements form tetrachlorides, MX4, which are predominantly tetrahedral and covalent. Germanium, tin and lead also form dichlorides, these becoming increasingly ionic in character as the atomic weight of the Group IV element increases and the element becomes more metallic. Carbon and silicon form catenated halides which have properties similar to their tetrahalides. [Pg.195]

Towards a simple Lewis base, for example the proton, phosphine is a poorer electron donor than ammonia, the larger phosphorus atom being less able to form a stable covalent bond with the acceptor atom or molecule. Phosphine is, therefore, a much weaker base than ammonia and there is no series of phosphonium salts corresponding to the ammonium salts but phosphonium halides. PH4X (X = Cl, Br, I) can be prepared by the direct combination of phosphine with the appropriate hydrogen halide. These compounds are much more easily dissociated than ammonium halides, the most stable being the iodide, but even this dissociates at 333 K PH4I = PH3 -t- HI... [Pg.226]

Numerous ionic compounds with halogens are known but a noble gas configuration can also be achieved by the formation of a covalent bond, for example in halogen molecules, X2, and hydrogen halides, HX. When the fluorine atom acquires one additional electron the second quantum level is completed, and further gain of electrons is not energetically possible under normal circumstances, i.e... [Pg.312]

The rigid classification of halides into covalent and ionic can only be an oversimplification, and the properties of the halides of a given element can very greatly depend upon the halogen. Thus the classification is only one of convenience. [Pg.342]

When an element has more than one oxidation state the lower halides tend to be ionic whilst the higher ones are covalent—the anhydrous chlorides of lead are a good example, for whilst leadfll) chloride, PbCl2, is a white non-volatile solid, soluble in water without hydrolysis, leadflV) chloride, PbC, is a liquid at room temperature (p. 200) and is immediately hydrolysed. This change of bonding with oxidation state follows from the rules given on p.49... [Pg.344]

The solid anhydrous halides of some of the transition metals are often intermediate in character between ionic and covalent their structures are complicated by (a) the tendency of the central metal ion to coordinate the halide ions around it, to form an essentially covalent complex, (b) the tendency of halide ions to bridge, or link, two metal ions, again tending to covalency (cf. aluminium chloride, p. 153 and iron(III) chloride, p. 394). [Pg.344]

The melting and boiling points of a series of similar covalent halides of a given element are found to increase from the fluoride to the iodide, i.e. as the molecular weight of the halide increases. Thus, the trihalides of phosphorus have melting points PF3 = 121.5 K. PCI3 = 161.2 K, PBrj = 233 K, PI3 = 334 K. [Pg.344]

Most covalent halides are hydrolysed by water (carbon tetrachloride being a notable exception, p. 195) to give acidic solutions, by either method (a) (example FeClj) or method (b) (example BCI3) ... [Pg.344]

The V(IV) species are all d complexes, hence their colour. Besides the VO compounds, some halides VX4 are known, for example VCI4, a liquid with a tetrahedral, covalent molecule and properties similar to those of TiCl4, but coloured (red-brown). [Pg.375]

Zincill) chloride. ZnCl2, is the only important halide—it is prepared by standard methods, but cannot be obtained directly by heating the hydrated salt. It has a crystal lattice in which each zinc is surrounded tetrahedrally by four chloride ions, but the low melting point and solubility in organic solvents indicate some covalent... [Pg.419]

In its chemistry, cadmium exhibits exclusively the oxidation state + 2 in both ionic and covalent compounds. The hydroxide is soluble in acids to give cadmium(II) salts, and slightly soluble in concentrated alkali where hydroxocadmiates are probably formed it is therefore slightly amphoteric. It is also soluble in ammonia to give ammines, for example Of the halides, cadmium-... [Pg.434]

Carbon-oxygen and carbon-halogen bonds are polar covalent bonds and carbon bears a partial positive charge in alcohols ( " C—0 ) and in alkyl halides ( " C—X ) Alcohols and alkyl halides are polar molecules The dipole moments of methanol and chloromethane are very similar to each other and to water... [Pg.147]

Aluminum Halides. AH the halogens form covalent aluminum compounds having the formula AIX. The commercially most important are the anhydrous chloride and fluoride, and aluminum chloride hexahydrate. [Pg.136]

Halogens, Hydrogen Halides, and Other Covalent Halides. Most compounds containing Si—H bonds react very rapidly with the free halogens. An explosive reaction takes place when chlorine or bromine is allowed to react with SiH at room temperature, presumably forming halogenated silane derivatives (3). At lower temperatures, the reactions are moderated considerably, for example. [Pg.22]

Arsenic Halides. Arsenic forms a complete series of trihaUdes, but arsenic pentafluoride is the only well-known simple pentahaUde. AH of the arsenic haUdes, the physical properties of which are given in Table 2, are covalent compounds that hydrolyze in the presence of water. The trihaUdes form pyramidal molecules similar to the trivalent phosphoms analogues and may be prepared by direct combination of the elements. [Pg.333]

Beryllium Halides. The properties of the fluoride differ sharply from those of the chloride, bromide, and iodide. BeryUium fluoride is essentiaUy an ionic compound, whereas the other three haUdes are largely covalent. The fluoroberyUate anion is very stable. [Pg.75]


See other pages where Covalent halides is mentioned: [Pg.354]    [Pg.50]    [Pg.296]    [Pg.354]    [Pg.50]    [Pg.296]    [Pg.185]    [Pg.186]    [Pg.276]    [Pg.280]    [Pg.399]    [Pg.124]    [Pg.2902]    [Pg.71]    [Pg.152]    [Pg.326]    [Pg.344]    [Pg.344]    [Pg.371]    [Pg.396]    [Pg.398]    [Pg.424]    [Pg.610]    [Pg.99]    [Pg.5]    [Pg.6]    [Pg.6]    [Pg.149]    [Pg.332]   
See also in sourсe #XX -- [ Pg.344 ]

See also in sourсe #XX -- [ Pg.344 ]




SEARCH



Covalent organotin halide complexes

Metal covalent halides

© 2024 chempedia.info