Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Primary world

Occurrence. Iodine [7553-56-2] is widely distributed in the Hthosphere at low concentrations (about 0.3 ppm) (32). It is present in seawater at a concentration of 0.05 ppm (33). Certain marine plants concentrate iodine to higher levels than occur in the sea brine these plants have been used for their iodine content. A significant source of iodine is caUche deposits of the Atacama Desert, Chile. About 40% of the free world s iodine was produced in Japan from natural gas wells (34), but production from Atacama Desert caUche deposits is relatively inexpensive and on the increase. By 1992, Chile was the primary world producer. In the United States, underground brine is the sole commercial source of iodine (35). Such brine can be found in the northern Oklahoma oil fields originating in the Mississippian geological system (see Iodine and iodine compounds). [Pg.411]

Trinitrotoluene (TNT) was one of the primary World War I explosives used by the United States. During the war, the United States bought all the Chilean sodium nitrate and still needed more nitrate. The United States turned to toluol as the main raw material for producing the quantity of TNT needed, as it was cheaper and more readily available. Some toluol was produced in by-product ovens by the distillation of coal by the companies listed in Table 3.3. [Pg.27]

Laser-based profilometry is now being applied to a wide variety of both NDT and Quality Control gauging applications. In the world of NDT, the primary interest is in the details associated with surface topography or deformation of a particular component. Laser-based profilometry systems are commonly used to inspect surfaces for defects such as pitting, corrosion, deformation and cracking. Quality control gauges are used for absolute measurement of dimensions, such as the diameter and thickness of a given part. [Pg.1061]

A number of structured databases have been developed to classify proteins according to the three-dimensional structures. Many of these are accessible via the World Wide Web, T1 protein databanlc (PDB [Bernstein d al. 1977]) is the primary source of data about the stru tures of biological macromolecules and contains a large number of structures, but many i these are of identical proteins (complexed with different ligands or determined at differet resolutions) or are of close homologues. [Pg.555]

A breakdown of the mixed xylene supply sources in the United States is summarized in Table 1 (1). As shown in Table 1, the primary source of xylenes in the United States is catalytic reformate. In 1992, over 90% of the isolated xylenes in the United States were derived from this source. Approximately 9% of the recovered xylenes is produced via toluene disproportionation (TDP). In the United States, only negligible amounts of the xylenes are recovered from pyrolysis gasoline and coke oven light oil. In other parts of the world, pyrolysis gasoline is a more important source of xylenes. [Pg.410]

In the United States, more than 16.3 x 10 kg of human-inedible raw materials are available each year, and the rendering industry is a valuable asset in diverting these into valuable ingredients for use primarily in animal foods (4). The three largest meat packers are responsible for nearly four-fifths of aU red meat production (5) and enormous amounts of rendered meat meal and animal fat. Three broiler producers account for about 40% of the total broiler production. American Proteins, Inc. (RosweU, Georgia), the world s largest processor of poultry by-products, produces more than 450,000 t of poultry meal, feather meal, and poultry fat each year. It also produces more than 100,000 t of fish meal, fish oil, and fish products each year. Pish meal production worldwide in 1986 was estimated at 6.23 x 10 t, which with the 125 x 10 t of meat and bone meal plus 6.67 x 10 t of feather meal and poultry by-product meal (6) is the primary source of animal proteins used by the pet food industry. [Pg.150]

Although a tremendous number of fermentation processes have been researched and developed to various extents, only a couple of hundred ate used commercially. Fermentation industries have continued to expand in terms of the number of new products on the market, the total volume (capacity), and the total sales value of the products. The early 1990s U.S. market for fermentation products was estimated to be in the 9-10 x 10 range. The total world market is probably three times that figure, and antibiotics continue to comprise a primary share of the industry. Other principal product categories are enzymes, several organic acids, baker s yeast, ethanol (qv), vitamins (qv), and steroid hormones (qv). [Pg.177]

National Institute of Standards and Technology (NIST). The NIST is the source of many of the standards used in chemical and physical analyses in the United States and throughout the world. The standards prepared and distributed by the NIST are used to caUbrate measurement systems and to provide a central basis for uniformity and accuracy of measurement. At present, over 1200 Standard Reference Materials (SRMs) are available and are described by the NIST (15). Included are many steels, nonferrous alloys, high purity metals, primary standards for use in volumetric analysis, microchemical standards, clinical laboratory standards, biological material certified for trace elements, environmental standards, trace element standards, ion-activity standards (for pH and ion-selective electrodes), freezing and melting point standards, colorimetry standards, optical standards, radioactivity standards, particle-size standards, and density standards. Certificates are issued with the standard reference materials showing values for the parameters that have been determined. [Pg.447]

The ores of most importance are fluorspar, CaF2 fluorapatite, Ca (P0 2Fj cryoHte [15096-52-3], Na AlF. Fluorspar is the primary commercial source of fluoiine. Twenty-six percent of the world s high quaHty deposits of fluorspar are ia North America. Most of that is ia Mexico. United States production ia 1987—1991 was 314,500 metric tons, most of which occurred ia the Illinois-Kentucky area. Imported fluorspar ia 1990—1991 represented about 82% of U.S. consumption 31% of U.S. fluorspar imports were from Mexico and 29% from China compared to 66% from Mexico ia the 1973—1978 period. The majority of the fluorine ia the earth s cmst is ia phosphate rock ia the form of fluorapatite which has an average fluorine concentration of 3.5%. Recovery of these fluorine values as by-product fluorosiHcic acid from phosphate production has grown steadily, partially because of environmental requirements (see Phosphoric acid and THE phosphates). [Pg.137]

Outside of the United States, there are six primary producers in China, France, Mexico, Morocco, South Africa, and Spain. Mines in Newfoundland, Canada, were closed in 1990. Both Mexico and South Africa have lost market share to China which has high grade, low cost fluorspar. China is expected to dominate world markets because reserves are vast and production cost is low. Table 3 (2) shows a Hst of world producers by country of fluorspar in the early 1990s. [Pg.173]

Petroleum and its lighter congener, natural gas, are the predominant sources of hydrocarbon raw materials, accounting for over 95% of all such materials. Assuring sources of petroleum and natural gas has become a primary goal of national poHcies all over the world, and undoubtedly was one of the principal justifications for the 1992 Gulf War. [Pg.366]

Secondary Lead. The emphasis in technological development for the lead industry in the 1990s is on secondary or recycled lead. Recovery from scrap is an important source for the lead demands of the United States and the test of the world. In the United States, over 70% of the lead requirements are satisfied by recycled lead products. The ratio of secondary to primary lead increases with increasing lead consumption for batteries. WeU-organized collecting channels are requited for a stable future for lead (see BATTERIES, SECONDARY CELLS Recycling NONFERROUS METALS). [Pg.48]

A world production summary of primary and refined lead is given in Table 5. U.S. consumption for the same period is given in Table 6. [Pg.50]

Secondary lead production made up over 70% of the lead produced in the United States in 1992 vs 54% in 1980. The amount of secondary lead produced was 698 X 10 t in 1988, 888 x 10 t in 1990, and 878 x 10 t in 1992. Of the 1.2 x 10 t of lead consumed in the United States in 1992, approximately 880,000 t were produced from the recycling of lead—acid batteries and 350,000 t from primary sources. A similar trend exists worldwide. In 1992, for the first time, slightly over half (51%) of the lead produced in the world came from secondary sources. [Pg.51]

Primary. Mercury metal is produced from its ores by standard methods throughout the world. The ore is heated in retorts or furnaces to... [Pg.106]

Explosion-bonded metals are produced by several manufacturers in the United States, Europe, and Japan. The chemical industry is the principal consumer of explosion-bonded metals which are used in the constmction of clad reaction vessels and heat-exchanger tube sheets for corrosion-resistant service. The primary market segments for explosion-bonded metals are for corrosion-resistant pressure vessels, tube sheets for heat exchangers, electrical transition joints, and stmctural transition joints. Total world markets for explosion-clad metals are estimated to fluctuate between 30 x 10 to 60 x 10 annually. [Pg.152]

The world economic (proven) nickel reserves are estimated at 47.0 x 10 t. At the 1992 world rate of mine production, these reserves would be expected to last at least until the year 2050. If, however, annual mine production increases at a rate that reflects a predicted increase in the world primary nickel consumption of 2% annually, these reserves would be depleted before 2030 (6,8,9). [Pg.2]

Lightwater reactors, the primary type of nuclear power reactor operated throughout the world, are fueled with uranium dioxide [1344-57-6] UO2 miched from the naturally occurring concentration of 0.71% uranium-235 [15117-96-17, to approximately 3% (1). As of this writing all civiUan nuclear... [Pg.184]

Disposable polypropylene nonwoven fabrics are widely used as the coverstock for disposable baby diapers. The expansion of the disposable diaper market throughout the world has been the primary source of growth in the consumption of polypropylene in the fiber market. In addition, nonwoven polypropylene fabrics are used in a variety of other disposable sanitary products, such as baby wipes, adult incontinence, and feminine hygiene products. Use of polypropylene nonwovens in disposable medical apparel, such as surgical gowns, has increased as a means of reducing the spread of infection. [Pg.421]


See other pages where Primary world is mentioned: [Pg.332]    [Pg.332]    [Pg.332]    [Pg.332]    [Pg.1800]    [Pg.358]    [Pg.390]    [Pg.247]    [Pg.213]    [Pg.216]    [Pg.491]    [Pg.582]    [Pg.10]    [Pg.107]    [Pg.173]    [Pg.281]    [Pg.17]    [Pg.432]    [Pg.253]    [Pg.86]    [Pg.302]    [Pg.324]    [Pg.106]    [Pg.158]    [Pg.175]    [Pg.396]    [Pg.462]    [Pg.1]    [Pg.83]    [Pg.103]    [Pg.286]    [Pg.339]    [Pg.42]   
See also in sourсe #XX -- [ Pg.429 ]




SEARCH



World primary energy consumption

World primary energy consumption source

© 2024 chempedia.info