Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relative contribution

One significant feature of the Parametric Method is that it indicates, through the (1 + K 2) value, the relative contribution of each variable to the uncertainty in the result. Subscript i refers to any individual variable. (1 + K ) will be greater than 1.0 the higher the value, the more the variable contributes to the uncertainty in the result. In the following example, we can rank the variables in terms of their impact on the uncertainty in UR. We could also calculate the relative contribution to uncertainty. [Pg.169]

The group contribution method allows the approximate calculation of solubility by summing up fragmental values associated with substmctural units of the compounds (see Section 7.1). In a group contribution model, the aqueous solubility values are computed by Eq. (12), where log S is the logarithm of solubility, C is the number of occurrences of a substmctural group, i, in a molecule, and is the relative contribution of the fragment i. [Pg.496]

For many years resonance m carboxylate 10ns was emphasized when explaining the acidity of carboxylic acids Recently however it has been suggested that the indue tive effect of the carbonyl group may be more important It seems clear that even though their relative contributions may be a matter of debate both play major roles... [Pg.797]

The compositional distribution of ethylene copolymers represents relative contributions of macromolecules with different comonomer contents to a given resin. Compositional distributions of PE resins, however, are measured either by temperature-rising elution fractionation (tref) or, semiquantitatively, by differential scanning calorimetry (dsc). Table 2 shows some correlations between the commercially used PE characterization parameters and the stmctural properties of ethylene polymers used in polymer chemistry. [Pg.368]

The relative contributions from these processes strongly depend on the reaction conditions, such as type of solvent, substrate and water concentration, and acidity of catalyst (78,79). It was also discovered that in acid—base inert solvents, such as methylene chloride, the basic assistance requited for the condensation process is provided by another silanol group. This phenomena, called intra—inter catalysis, controls the linear-to-cyclic products ratio, which is constant at a wide range of substrate concentrations. [Pg.46]

The economic importance of copolymers can be cleady illustrated by a comparison of U.S. production of various homopolymer and copolymer elastomers and resins (102). Figure 5 shows the relative contribution of elastomeric copolymers (SBR, ethylene—propylene, nitrile mbber) and elastomeric homopolymers (polybutadiene, polyisoprene) to the total production of synthetic elastomers. Clearly, SBR, a random copolymer, constitutes the bulk of the entire U.S. production. Copolymers of ethylene and propylene, and nitrile mbber (a random copolymer of butadiene and acrylonitrile) are manufactured in smaller quantities. Nevertheless, the latter copolymers approach the volume of elastomeric butadiene homopolymers. [Pg.187]

Do not produce a long list of recommendations without any indication of the relative contributions they will make to the reduction of risk or without any comparison of costs and benefits. Resources are not unhmited and the more we spend on reducing one hazard, the less there is left to spend on reducing others. [Pg.2268]

The standard entropy change for the atom-molecule reactions is in the range 5-20 mole and the halogen molecule dissociation has an eiiU opy change of about 105 e.u. The halogen molecule dissociation energy decreases from chlorine to iodine, but the atom-molecule reactions become more endothermic from chlorine to iodine, and this latter effect probably influences the relative contributions to the mechanism from chain reaction and biinolecular reaction. [Pg.74]

The relative contributions of ions, electrons and positive holes to the conductivity is described drrough the transport number which is related to a partial conductivity defined by... [Pg.160]

An understanding of a wide variety of phenomena concerning conformational stabilities and molecule-molecule association (protein-protein, protein-ligand, and protein-nucleic acid) requires consideration of solvation effects. In particular, a quantitative assessment of the relative contribution of hydrophobic and electrostatic interactions in macromolecular recognition is a problem of central importance in biology. [Pg.133]

The relative contribution of over-barrier ( > Vq) transitions and tunneling ( < Vq) to the integral (2.1) is governed by the dimensionless parameter... [Pg.13]

The relative contributions to van der Waals interactions arising from the Debye, Keesom, and London effects... [Pg.174]

The relative contributions of each type of interaction to the total van der Waals interaction has been determined by Israelachvili [95] for pairs of similar and dissimilar molecules theoretically by comparing the magnitudes of the terms within the square brackets, using reported values for the polarizability and the ionization potential of these molecules. These results are summarized in Table 1. [Pg.174]

An analogous mechanism should also produce polymers on irradiation of epoxies. Crivello s recent mechanistic suggestions [29] are consistent with the mechanisms given above. One can conclude that radiation-induced polymerization of epoxies can proceed via several mechanisms. However, further work is needed to determine the relative contributions of the different mechanisms, which might vary from one epoxy to another. As part of the Interfacial Properties of Electron Beam Cured Composites CRADA [37], an in-depth study of the curing mechanism for the cationic-initiated epoxy polymerization is being undertaken. [Pg.1023]

Fig,. 4,3-6 Relative contributions to the Zion arui core melt frequencies. Reprinted with permissto. Electric Power Research institute USA... [Pg.12]

In this book those ferroelectric solids that respond to shock compression in a purely piezoelectric mode such as lithium niobate and PVDF are considered piezoelectrics. As was the case for piezoelectrics, the pioneering work in this area was carried out by Neilson [57A01]. Unlike piezoelectrics, our knowledge of the response of ferroelectric solids to shock compression is in sharp contrast to that of piezoelectric solids. The electrical properties of several piezoelectric crystals are known in quantitative detail within the elastic range and semiquantitatively in the high stress range. The electrical responses of ferroelectrics are poorly characterized under shock compression and it is difficult to determine properties as such. It is not certain that the relative contributions of dominant physical phenomena have been correctly identified, and detailed, quantitative materials descriptions are not available. [Pg.113]

There has been much discussion of the relative contributions of the no-bond and dative structures to the strength of the CT complex. For most CT complexes, even those exhibiting intense CT absorption bands, the dative contribution to the complex stability appears to be minor, and the interaction forces are predominantly the noncovalent ones. However, the readily observed absorption effect is an indication of the CT phenomenon. It should be noted, however, that electronic absorption shifts are possible, even likely, consequences of intermolecular interaetions of any type, and their characterization as CT bands must be based on the nature of the spectrum and the structures of the interaetants. This subject is dealt with in books on CT complexes. ... [Pg.394]


See other pages where Relative contribution is mentioned: [Pg.251]    [Pg.308]    [Pg.394]    [Pg.395]    [Pg.69]    [Pg.295]    [Pg.178]    [Pg.377]    [Pg.379]    [Pg.179]    [Pg.388]    [Pg.51]    [Pg.419]    [Pg.485]    [Pg.89]    [Pg.273]    [Pg.1590]    [Pg.252]    [Pg.119]    [Pg.26]    [Pg.248]    [Pg.201]    [Pg.315]    [Pg.174]    [Pg.26]    [Pg.131]    [Pg.113]    [Pg.540]    [Pg.186]    [Pg.76]    [Pg.77]   
See also in sourсe #XX -- [ Pg.103 , Pg.192 ]




SEARCH



© 2024 chempedia.info