Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Compounds separated

Dissolve 0 5 ml. of glycerol in 20 ml. of w ater, and add 20 ml. of the above 5% aqueous sodium periodate solution. After 15-20 minutes add 12 ml. of the above 10% ethanolic dimedone solution, and stir well at intervals for another 15 minutes. The addition of the dimedone solution may cause a rapid precipitation of some of the dimedone itself, which is only slightly soluble in water, whereas the formaldehyde-dimedone compound separates more slowly from the solution. [Pg.146]

When these benzoyl compounds separate in the course of the Schotten-Baumann reaction, they frequently occlude traces of unchanged benzoyl chloride, which thus escapes hydrolysis by the alkali it is advantageous there fore to recrystallise the benzoyl compounds whenever possible from ethanol or methylated spirit, since these solvents will esterify the unchanged chloride and so remove the latter from the recrystallised material. [Pg.244]

C,H,CH,- —C-NH,j The compound separates in either, sometimes as both, of two dimorphic forms, m.p. 150° and 175° respectively. The former may be converted into the higher m.p. form by dissolving It in alcohol and seeding with crystals of the form, m.p. 175° the low m.p. form when warmed to 175° gives, after sohdification, a m.p. of 175°. Both dimorphic forms give identical derivatives with carboxyUc acids and sulphonic acids (see Sections 111,85 and IV,33). [Pg.965]

Ck)ol the alkaline solution resulting from the distillation of the volatile neutral compounds, make it acid to litmus with dilute sulphuric acid, and add an excess of solid sodium bicarbonate. Extract this bicarbonate solution with two 20 ml. portions of ether remove the ether from the combined ether extracts and identify the residual phenol (or enol). Then acidify the bicarbonate solution cautiously with dilute sulphiu-ic acid if an acidic compound separates, remove it by two extractions with 20 ml. portions of ether if the acidified solution remains clear, distil and collect any water-soluble, volatile acid in the distillate. Characterise the acid as under 2. [Pg.1098]

The following data were obtained for four compounds separated on a 20-m capillary column. [Pg.615]

Table 2. Retention Data for Racemic Compounds Separated on a p-Cyclodextrin Stationary Phase ... Table 2. Retention Data for Racemic Compounds Separated on a p-Cyclodextrin Stationary Phase ...
Most essential oils appear to be evolved directly in the form of terpenic or non-terpenic compounds separable from the plant tissues in the same form as they exist therein. A considerable number, however, are evolved in the form of complex compounds known as glucosides, in which the essential oil complex is present, but wherein the essential oil itself does not exist in the free state. [Pg.13]

In conjunction with Bachofen, Chuit has devised a method for separating the isomeric ionones depending on the following facts. The method is based on the insolubility of the sodium salt of the hydrosul-phonic compound of a-ionone in the presence of sodium chloride, whilst the corresponding j8-compound remains in solution. If sodium chloride be added to a hot solution of the hydrosulphonic compounds, separation of the n-salt takes place slowly as the solution cools, and the salt crystallises in fine white scales, which can be recrystallised from hot water. The j8-compound remains in solution. [Pg.218]

Thujone is best identified by its tribromo-compound, CjflHjgBrgO, melting at 121° to 122°. It is obtained by adding 5 c.c. of bromine (at once) to a solution of 5 grams of thujone in 30 c.c. of petroleum ether. The tribromo-compound separates on evaporation of the solvent and is washed with alcohol and recrystallised from boiling acetic ether. [Pg.236]

The dl-a-methYl-3,4-dihYdroxYphenylalanine may be made as described in U.S. Patent 2,868,818. Five-tenths of a gram of 3-hYdroxY-4-methoxYphenylalanine was dissolved in 20 ml of concentrated hydrochloric acid, the solution saturated with hydrogen chloride and heated in a sealed tube at 150°C for 2 hours. The dark reaction mixture was concentrated to dryness in vacuo, excess acid removed by flushing several times with ethanol. On dissolving the dark residue in a minimum amount of water and adjusting the clarified solution to pH 6.5 with ammonium hydroxide the compound separated in fine crystals which were filtered, washed with alcohoi and ether. The crystalline product had a MP of 299.5° to 300°C with decomposition. [Pg.993]

SFC has been performed with either open capillary columns similar to those used in GC or packed columns transferred from LC, and the instrumentation requirements differ for these two approaches [12]. This chapter will focus on the use of packed column technology because of its dominance in the area of pharmaceutical compound separations. Current commercial instrumentation for packed column SFC utilizes many of the same components as traditional LC instruments, including pumps, injection valves, and detectors. In fact, most modem packed column SFC instm-ments can also be used to perform LC separations, and many of the same stationary phases can be used in both LC and SFC [9]. [Pg.302]

Arguably the ultimate LC-MS interface would be one that provides El spectra, i.e. a spectrum from which structural information can be extracted by using famihar methodology, and this was one of the great advantages of the moving-belt interface. There is, however, an incompatibility between the types of compound separated by HPLC and the way in which electron ionization is achieved and therefore such an interface has restricted capability, as previously discussed with respect to the moving-belt interface (see Section 4.2 above). [Pg.147]

An inductively coupled plasma formed by passing argon through a quartz torch is widely used for the mass spectroscopic analysis of metal compounds separated by online HPLC.6 Samples are nebulized on introduction into the interface. Plasma impact evaporates solvent, and atomizes and ionizes the analyte. Applications include separation of organoarsenic compounds on ion-pairing F4PLC and vanadium species on cation exchange. [Pg.59]

Phosphorous- and sulfur-containing compounds separated by GC have been determined with both He and N2 MIP-MS systems with low ng to pg detection limits [335], Halogenated compounds and organotins can be determined by GC-MIP-MS, at low to sub-pg detection limits. [Pg.473]

LC-MSn, generally requires some background information on the nature of the solutes. Compared with GC-MS with EI/CI, LC-MS does not offer the same identification possibilities, because of the different ionisation mechanisms. Nevertheless, LC-MS has become an invaluable tool to selectively quantify solutes, and to confirm structures or to elucidate structural characteristics. A drawback of LC-MS is that measurable organic compounds are very limited compared with compounds separable by LC alone. LC-MS places considerable constraints... [Pg.497]

The use of ionisation techniques such as El and Cl for TLC stationary phases has generally been limited to relatively nonpolar and thermally stable molecules. Polar involatile compounds, separated on silica gel, generally strongly adsorb on to the matrix, and decompose when heat is applied for volatilisation [817]. Use of less-adsorbent phases, such as polyamide, is particularly useful for TLC-EIMS work, because the analytes are not as strongly adsorbed to this phase and do not require high probe temperatures [818,819]. For compounds that are not suitable candidates for TLC-EIMS, FAB can be employed. Chemical ionisation, although suitable for TLC-MS, appears to have been little used. [Pg.539]

There have been some examples of the use of LDMS applied to the analysis of compounds separated via TLC, although not specifically dealing with polymer additives [852]. Dewey and Finney [838] have described direct TLC-spectroscopy and TLC-LMMS as applied to the analysis of lubricating oil additives (phenolic and amine antioxidants, detergents, dispersants, viscosity index improvers, corrosion inhibitors and metal deactivators). Also a series of general organics and ionic surfactants were analysed by means of direct normal-phase HPTLC-LMMS [837]. Novak and Hercules [858] have... [Pg.542]

Speciation involves a number of discrete analytical steps comprising the extraction (isolation) of the analytes from a solid sample, preconcentration (to gain sensitivity), and eventually derivatisation (e.g. for ionic compounds), separation and detection. Various problems can occur in any of these steps. The entire analytical procedure should be carefully controlled in such a way that decay of unstable species does not occur. For speciation analysis, there is the risk that the chemical species can convert so that a false distribution is determined. In general, the accuracy of the determinations and the trace-ability of the overall analytical process are insufficiently ensured [539]. [Pg.674]

Methods of fixing the volatile aroma and flavor compounds separately from the instant coffee powder have been developed. The volatile mixture can be mixed with aqueous gelatin or gum arabic and spray dried. The oily droplets of the flavor and aroma compounds are coated with gelatin or gum arabic in a dry lattice. This powder can be mixed in with instant coffee powder and is relatively stable in the presence of air. Emulsification with sugar is also a highly effective way of trapping and preserving coffee volatiles, but is of limited use for instant coffees. [Pg.99]

The selective inclusion properties of 40 (Table 6) offer several possibilities of compound separation which are of interest in analytics and for preparation purposes37). The separation of methanol from a mixture with ethanol, or of propionic aldehyde from propionic acid, or of 2-chloropropionic acid from propionic acid or lactic acid, etc., are a few examples. [Pg.78]

Further important results of compound separation (two-component solvent mixtures) using hosts 47 and 48 are taken from Table 9 and are as follows (A 47 allows... [Pg.82]


See other pages where Compounds separated is mentioned: [Pg.30]    [Pg.855]    [Pg.75]    [Pg.251]    [Pg.324]    [Pg.170]    [Pg.171]    [Pg.180]    [Pg.191]    [Pg.78]    [Pg.374]    [Pg.237]    [Pg.369]    [Pg.377]    [Pg.378]    [Pg.259]    [Pg.40]    [Pg.855]    [Pg.153]    [Pg.251]    [Pg.526]    [Pg.538]    [Pg.538]    [Pg.559]    [Pg.677]    [Pg.338]   


SEARCH



© 2024 chempedia.info