Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers latex dispersions

A similar seeding technique can be used to prepare monodispersed polymer latex dispersions by emulsion polymerisation (see page 17). [Pg.13]

One obvious example of this is opal, the gemstone formed by adhesion of silica particles over geological time. The colors seen by diffraction of white light from the particles suggest that the structuring of the particles extends for millimetres, a milhon times further than would be expected from the range of atomic forces. The same sorts of colors can be seen in polymer latex dispersions. It is important to inquire about the origins of such structures. [Pg.173]

Surfactants are essential for the preparation of solid/liquid dispersions (suspensions). The latter are generally prepared using two main procedures (7) Bmlding up of particles from molecular units. (2) Dispersion of bulk performed powder in a liquid followed by dispersion and wet milling (comminution) to produce smaller particles. An example of the first system is the production of polymer latex dispersions by emulsion or dispersion polymerization. The monomer is emulsified in an aqueous solution containing a surfactant to produce an emulsion of the monomer. An initiator is added to initiate the polymerization process. In some cases, initiation occurs in the micelles that are swollen by the monomer. The number of particles produced and hence their size is determined by the number of micelles in solution. In dispersion polymerization, the monomer is mixed with a solvent in which the resulting polymer is insoluble. A surfactant (protective colloid) and initiator is added. The surfactant prevents flocculation of the polymer particles once formed. Again the size of the particles produced depends on the nature and concentration of the surfactant used. [Pg.719]

Polymer (latexes) dispersions are generated by the radical polymerization of unsaturated monomers solubilized in the micellar systems. The significant growth in the production of these latexes is due to a number of factors such as ... [Pg.73]

In the second chapter (Preparation of polymer-based nanomaterials), we summarize and discuss the literature data concerning of polymer and polymer particle preparations. This includes the description of mechanism of the radical polymerization of unsaturated monomers by which polymer (latexes) dispersions are generated. The mechanism of polymer particles (latexes) formation is both a science and an art. A science is expressed by the kinetic processes of the free radical-initiated polymerization of unsaturated monomers in the multiphase systems. It is an art in that way that the recipes containing monomer, water, emulsifier, initiator and additives give rise to the polymer particles with the different shapes, sizes and composition. The spherical shape of polymer particles and the uniformity of their size distribution are reviewed. The reaction mechanisms of polymer particle preparation in the micellar systems such as emulsion, miniemulsion and microemulsion polymerizations are described. The short section on radical polymerization mechanism is included. Furthermore, the formation of larger sized monodisperse polymer particles by the dispersion polymerization is reviewed as well as the assembling phenomena of polymer nanoparticles. [Pg.312]

Another possible way to reduce the costs might be to directly use the colloidal CNT/polymer latex dispersions. Examples of this... [Pg.219]

Two of the main European collaborations Tharwat has had in recent years have been the groups of Dotchi Exerowa in Sofia and that of Conxita Solans in Barcelona. With Dotchi the work has focused on foam and emulsion films and with Coxita (plus Paul Luckham) on the stabilization of latex particles. Indeed in much of this latter work on foams, emulsions, and particle dispersions, very efficient stabilizers, based on hydrophobically-modified, sugar-based polymers, have been studied. It was observed, for example, that, when these are added, polymer latex dispersions are stable in Na2S04 solutions of up to 1.5 mol dm . ... [Pg.323]

In mass polymerization bulk monomer is converted to polymers. In solution polymerization the reaction is completed in the presence of a solvent. In suspension, dispersed mass, pearl or granular polymerization the monomer, containing dissolved initiator, is polymerized while dispersed in the form of fine droplets in a second non-reactive liquid (usually water). In emulsion polymerization an aqueous emulsion of the monomer in the presence of a water-soluble initiator Is converted to a polymer latex (colloidal dispersion of polymer in water). [Pg.321]

Acrylic polymers are considered to be nontoxic. In fact, the FDA allows certain acrylate polymers to be used in the packaging and handling of food. However, care must be exercised because additives or residual monomers present in various types of polymers can display toxicity. For example, some acryflc latex dispersions can be mild skin or eye irritants. This toxicity is usually ascribed to the surfactants in the latex and not to the polymer itself. [Pg.171]

Polymeric binder can be added to the network either as an aqueous latex dispersion or as a solution that should be dried prior to lamination in this process. In either case, the polymer should form a film and join adjacent fibers together and thus improve the stress transfer characteristics of the fibrous network. Provided that the proper film forming conditions are available, the property profile of the bonded network is determined to a significant degree by the properties of the polymeric binder at the temperature of use [20,22]. For example, if a softer type of product is desired, a binder with a relatively low glass transition temperature Tg) is often chosen. [Pg.579]

A bond coat of a polymer latex (also called polymer emulsions or dispersions) such as styrene butadiene (SBR), polyvinyl acetate (PVA) acrylics or modified acrylics. These are applied to the prepared concrete as... [Pg.104]

Resin cements or polymer cements have been reviewed by Chandra, Justnes, and Ohama [343]. Polymer cements are materials made by replacing the cement at least partly with polymers. Cements can be modified by latex, dispersions, polymer powders, water-soluble polymers, liquid resins, and monomers. [Pg.130]

Carbon black may serve as a low-cost additive for controlling the gas migration in cement slurries [303]. It is intended as a suitable substitute for polymer latex and silica fume and has been tested in field applications [304,1256]. The concentration of carbon black varies from 2 to 20 parts, based on the weight of the dry cement [1220]. The particle size varies from 10 to 200 nm. A surfactant is necessary for dispersion, for example, formaldehyde-condensed naphthalene sulfonate or sulfonated cumarone or indene resins. [Pg.148]

Surfactants and Colloids in Supercritical Fluids Because very few nonvolatile molecules are soluble in CO2, many types of hydrophilic or lipophilic species may be dispersed in the form of polymer latexes (e.g., polystyrene), microemulsions, macroemulsions, and inorganic suspensions of metals and metal oxides (Shah et al., op. cit.). The environmentally benign, nontoxic, and nonflammable fluids water and CO2 are the two most abundant and inexpensive solvents on earth. Fluorocarbon and hydrocarbon-based surfactants have been used to form reverse micelles, water-in-C02... [Pg.15]

Free-radical polymerization of alkenes has been carried out in aqueous conditions.115 Aqueous emulsion and suspension polymerization is carried out today on a large scale by free-radical routes. Polymer latexes can be obtained as products (i.e., stable aqueous dispersions... [Pg.66]

The s.a.n.s. experiments were carried out using the D17 camera at the I.L.L., Grenoble. Data were collected at two wavelengths, 0.8 and 1.4 nm at a sample to detector distance of 1.8 m. The overlapping spectra were combined to give a sufficiently wide Q range to enable the data to be numerically inverted to obtain the density distributions. The latex dispersions were prepared at a solids concentration of 4% and polymer solution concentrations between 200 and 300 ppm. [Pg.149]

The p.c.s. measurements were carried out using a Malvern multibit correlator and spectrometer together with a mode stabilized Coherent Krypton-ion laser. The resulting time correlation functions were analysed using a non-linear least squares procedure on a PDP11 computer. The latex dispersions were first diluted to approximately 0.02% solids after which polymer solution of the required concentration was added. [Pg.149]

The viscoelastic behavior of concentrated (20% w/w)aqueous polystryene latex dispersions (particle radius 92nm), in the presence of physically adsorbed poly(vinyl alcohol), has been investigated as a function of surface coverage by the polymer using creep measurements. From the creep curves both the instantaneous shear modulus, G0, and residual viscosity, nQ, were calculated. [Pg.411]

Any fundamental study of the rheology of concentrated suspensions necessitates the use of simple systems of well-defined geometry and where the surface characteristics of the particles are well established. For that purpose well-characterized polymer particles of narrow size distribution are used in aqueous or non-aqueous systems. For interpretation of the rheological results, the inter-particle pair-potential must be well-defined and theories must be available for its calculation. The simplest system to consider is that where the pair potential may be represented by a hard sphere model. This, for example, is the case for polystyrene latex dispersions in organic solvents such as benzyl alcohol or cresol, whereby electrostatic interactions are well screened (1). Concentrated dispersions in non-polar media in which the particles are stabilized by a "built-in" stabilizer layer, may also be used, since the pair-potential can be represented by a hard-sphere interaction, where the hard sphere radius is given by the particles radius plus the adsorbed layer thickness. Systems of this type have been recently studied by Croucher and coworkers. (10,11) and Strivens (12). [Pg.412]

In this paper we report some rheological studies of aqueous concentrated polystyrene latex dispersions, in the presence of physically adsorbed poly(vinyl alcohol). This system has been chosen in view of its relevance to many practical systems and since many of the parameters needed for interpretation of the rheological results are available (15-18). The viscoelastic properties of a 20% w/w latex dispersion were investigated as a function of polymer coverage, using creep measurements. [Pg.413]

Aqueous polynitrile oxide curing compositions, with good storage stability, have been patented (525). The compositions comprise aqueous dispersions containing nitrile oxides and are useful for coating systems that are cured at room temperature without the release of byproducts. Latexes are cured by mixing a polymer latex with a stable polynitrile oxide, for example, 2,4,6-triethylbenzene -1,3-dicarbonitrile oxide, and removing water from the mixture. [Pg.105]

This is superficially similar to suspension polymerisation. But in this process a monomer dispersed in water, in presence of a surface active agent is polymerised to give a stable polymer latex. [Pg.16]

Of the several types of the polymer-modified mortars and concretes used for various construction applications, latex-modified mortar and concrete are by far the most widely used materials. Latex-modified mortar and concrete are prepared by mixing a latex, either in a dispersed liquid or as a redispersible powder form with fresh cement mortar and concrete mixtures. The polymers are usually added to the mixing water just as other chemical admixtures, at a dosage of 5-20% by weight of cement. Polymer latexes are stable dispersions of very small (0.05-5 pm in diameter) polymer particles in water and are produced by emulsion polymerization. Natural rubber latex and epoxy latex are exceptions in that the former is tapped from rubber trees and the latter is produced by emulsifying an epoxy resin in water by the use of surfactants [87]. [Pg.345]

Latex originally meant the sap of the rubber plant and is a dispersion of particulate rubber. Emulsion polymerization produces a similar dispersion of synthetic rubber or polymers and was rapidly developed to obtain a substitute for natural rubber during World War II. Therefore the product of emulsion polymerization was first called polymer latex, but is now known simply as latex. Sometimes the product of emulsion polymerization is called polymer emulsion. But this terminology is incorrect for latices of solid polymer particles, because emulsion indicates liquid-in-liquid dispersion (1). [Pg.593]


See other pages where Polymers latex dispersions is mentioned: [Pg.736]    [Pg.43]    [Pg.40]    [Pg.145]    [Pg.43]    [Pg.2]    [Pg.619]    [Pg.736]    [Pg.43]    [Pg.40]    [Pg.145]    [Pg.43]    [Pg.2]    [Pg.619]    [Pg.5]    [Pg.358]    [Pg.146]    [Pg.190]    [Pg.579]    [Pg.532]    [Pg.939]    [Pg.412]    [Pg.420]    [Pg.128]    [Pg.144]    [Pg.749]    [Pg.114]    [Pg.132]    [Pg.108]    [Pg.27]    [Pg.498]    [Pg.52]   
See also in sourсe #XX -- [ Pg.2 , Pg.8 ]

See also in sourсe #XX -- [ Pg.2 , Pg.8 ]




SEARCH



Dispersant, polymers

Latex dispersions

Polymer Dispersants

Polymer dispersed

Polymers dispersion

© 2024 chempedia.info