Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polycarbonate blended with acrylonitrile-butadiene-styrene

Oligomeric aromatic phosphates have been patented and commercially used as flame-retardant additives mainly for impact-resistant polystyrene blends with polyphenylene oxide and polycarbonate blends with acrylonitrile-butadiene-styrene (ABS) copolymers (130,131). They have also been shown useful in thermoplastic polyesters (92). The principal commercial examples are based on phenol and resorcinol (Akzo-Nobel s Fyrolflex RDP) or phenol and bisphenol A (Akzo-Nobel s Fyrolflex BDP or Albemarle s Ncendx P-30). Although these have the diphosphate as their principal ingredient, they also contain higher oligomers. [Pg.5572]

Boronic acids (69 and 70) (Fig. 45) with more than one boronic acid functionality are known to form a polymer system on thermolysis through the elimination of water.93 Specifically, they form a boroxine (a boron ring system) glass that could lead to high char formation on burning. Tour and co-workers have reported the synthesis of several aromatic boronic acids and the preparation of their blends with acrylonitrile-butadiene-styrene (ABS) and polycarbonate (PC) resins. When the materials were tested for bum resistance using the UL-94 flame test, the bum times for the ABS samples were found to exceed 5 minutes, thereby showing unusual resistance to consumption by fire.94... [Pg.50]

Automotive appHcations account for about 116,000 t of woddwide consumption aimuaHy, with appHcations for various components including headlamp assembHes, interior instmment panels, bumpers, etc. Many automotive appHcations use blends of polycarbonate with acrylonitrile—butadiene—styrene (ABS) or with poly(butylene terephthalate) (PBT) (see Acrylonitrile polymers). Both large and smaH appHances also account for large markets for polycarbonate. Consumption is about 54,000 t aimuaHy. Polycarbonate is attractive to use in light appHances, including houseware items and power tools, because of its heat resistance and good electrical properties, combined with superior impact resistance. [Pg.285]

Patented or commercial polymer blends are in most cases multiphase, compatibilized systems. In the old but still popular blends of polyvinyl chloride or polycarbonate with acrylonitrile-butadiene-styrene copolymer, PVC/ABS or PC/ABS, the styrene-acrylonitrile copolymer, SAN, ascertains adequate compatibilization in the systems. Note that ABS went through a series of process and composition modifications to enhance performance in blends. [Pg.500]

The blend of bisphenol-A polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) resin is a useful industrial material. One reason is that the miscibility between PC and poly(styrene-co-acrylonitrile) (SAN), which is a matrix of ABS resin, is not too bad, though it is immiscible. In particular, a blend of PC and SAN-25 with 25 wt% AN is useful, because the miscibility is the best in PC/SAN systems and the blend shows the lowest value of x in the system (Li et al. 1999). The blend has been used without any compatibUizers. It would be expected that the... [Pg.886]

We previously reported that brominated aromatic phosphate esters are highly effective flame retardants for polymers containing oxygen such as polycarbonates and polyesters (9). Data were reported for use of this phosphate ester in polycarbonates, polyesters and blends. In some polymer systems, antimony oxide or sodium antimonate could be deleted. This paper is a continuation of that work and expands into polycarbonate alloys with polybutylene terephthalate (PBT), polyethylene terephthalate (PET) and acrylonitrile-butadiene-styrene (ABS). [Pg.255]

Polycarbonate is blended with a number of polymers including PET, PBT, acrylonitrile-butadiene-styrene terpolymer (ABS) rubber, and styrene-maleic anhydride (SMA) copolymer. The blends have lower costs compared to polycarbonate and, in addition, show some property improvement. PET and PBT impart better chemical resistance and processability, ABS imparts improved processability, and SMA imparts better retention of properties on aging at high temperature. Poly(phenylene oxide) blended with high-impact polystyrene (HIPS) (polybutadiene-gra/f-polystyrene) has improved toughness and processability. The impact strength of polyamides is improved by blending with an ethylene copolymer or ABS rubber. [Pg.143]

K.H. Pawlowski and B. Schartel, Flame retardancy mechanisms of aryl phosphates incombination with boehmite in bisphenol A polycarbonate/acrylonitrile butadiene styrene blends, Polym. Degrad. Stabil., 2008, 93 657-667. [Pg.328]

To improve the properties of PLA, plasticizers, special additives such as chain-extenders, polymer blends, and composites are commonly investigated. Martin and Averous (10) have studied the effects of various plasticizers on the properties of PLA. Pilla et al. (11-12) have investigated the effects of chain-extenders on the foaming properties of PLA. In addition, a vast number of studies have been conducted to enhance the properties of PLA by blending it with various polymers such as polyethylene oxide (PEO), polypropylene oxide (PPO), polyvinyl acetate, polyolefins, polystyrene, HIPS (high impact polystyrene), polyacetals, polycarbonate, and acrylonitrile butadiene styrene (ABS) (13-26). [Pg.251]

The term acrylonitrile-butadiene-styrene copolymer (ABS) is used very broadly to define an important class of thermoplastic materials of which there are many different grades. These materials are used extensively in electrical a pliances, in the building and construction industries and in automotive componoits. Certain grades of ABS also find use as toughening agents in blends with other polymers, for example polycarbonates and polyamides (see Sections 19.8 and 19.9.3). [Pg.752]

The most common polymers used for instrument panel stmctnres are acrylonitrile-butadiene-styrene (ABS), acrylonitrile-butadiene-styrene blended with polycarbonate (ABS/PC), polycarbonate (PC), poly(phenylene oxide) blended with nylon (PPO/nylon), poly(phenylene oxide) blended with styrene (PPO/styrene), polypropylene (PP), and styrene-maleic anhydride copolymer (SMA) [3]. The percentage of each of these polymers typically used in year 2000 models is shown below in Table 17.3 [3], All of these materials by themselves... [Pg.732]

Let us first review various thermoplastics used in automotive applications. These include nylon 6,6-based blends (e.g., nylon 6,6-PPO), glass-filled nylon 6,6 with without impact modifiers, homo- and copolymers of PP, polybutylene terephthalate (PBT), polyethylene (PE), bis-phenol A polycarbonate (PC), acrylonitrile-butadiene-styrene (ABS), PC-ABS blends, glass-filled PP, and ABS. [Pg.590]

Traugott and co-workers [41] place the emphasis on aspects of PP, acrylonitrile-butadiene-styrene (ABS) and polycarbonate (PC) blends with ABS or impaa modifiers. Material development benefits from a host of recent technical advancements such as catalysis, reaction engineering, impact modification and compatibilisation. Some examples of these are fourth generation Ziegler-Natta and metallocene polyolefin catalysts, highly efficient solution processes (PP and ABS) and copolymer modifiers. [Pg.168]

Rheological studies have been conducted on several polymers. These include dynamic rheological measurement and capillary rheometry of rubbers [92], capillary rheometry of polypropylene [106], degradation studies on polypropylene [107], torsion rheometry of polyethylene [108], viscosity effects in blends of polycarbonate with styrene-acrylonitrile and acrylonitrile-butadiene-styrene [109], peel adhesion of rubber-based adhesives [110], and the effect of composition of melamine-formaldehyde resins on rheological properties [112],... [Pg.41]

Some measurements of this property have been made in a range of electrically conducting polymers. These include epoxy resin/polyaniline-dodecylbenzene sulfonic acid blends [38], polystyrene-black polyphenylene oxide copolymers [38], semiconductor-based polypyrroles [33], titanocene polyesters [40], boron-containing polyvinyl alcohol [41], copper-filled epoxy resin [42], polyethylidene dioxy thiophene-polystyrene sulfonate, polyvinyl chloride, polyethylene oxide [43], polycarbonate/acrylonitrile-butadiene-styrene composites [44], polyethylene oxide complexes with sodium lanthanum tetra-fluoride [45], chlorine-substituted polyaniline [46], polyvinyl pyrolidine-polyvinyl alcohol coupled with potassium bromate tetrafluoromethane sulfonamide [47], doped polystyrene block polyethylene [38, 39], polypyrrole [48], polyaniline-polyamide composites [49], and polydimethyl siloxane-polypyrrole composites [50]. [Pg.135]

There are many other commercial examples of polymer blends. Polycarbonate can be blended with an acrylonitrile-butadiene-styrene terpolymer to give a PC-ABS blend. Polypropylene impact can be improved by the addition of ethylene-propylene copolymers, which are sometimes called ethylene-propylene-rubber (EPR). Ethylene, propylene, and a diene monomer (EPDM), such as ethylidene norbomene, is also used to impart impact and flexibiUty to polypropylene. [Pg.142]

Cox and co-workers [133] analysed PS/polyvinyl methyl ether blends by coincidence counting ToF mass spectrometry. This technique gave information on the chemical and spatial relationships between secondary ions. Thompson [134] carried out a quantitative surface analysis of organic polymer blends (e.g., miscible polycarbonate (PC)/PS blends) using ToF-SIMS. Lin and co-workers [135] used supersonic beam/multiphoton ionisation/ToF mass spectrometry to analyse photoablation products resulting from styrene-containing polymers such as styrene-butadiene, acrylonitrile-butadiene-styrene (ABS), and PS foams. Photoablation products were examined by supersonic beam spectrometry and the results were compared with those obtained by thermal decomposition. [Pg.307]

Acrylonitrile-butadiene-styrene (ABS) terpolymer. Acrylonitrile and styrene are grafted on polybutadiene. It is preferred over homopolymers because of impact resistance, dimensional stability and good heat-distortion resistance. It is an extremely important commercial copolymer and, in several applications, it is blended with other polymers (e.g., PVC or polycarbonates) in order to increase their heat-distortion temperatures. When methyl methacrylate and styrene are grafted on polybutadiene, a methyl methacrylate-butadiene-styrene MBS copolymer is formed. Vinylidene chloride-vinyl chloride copolymer. Because of its toughness, flexibility, and durability, the copolymer is used for the manufacture of filaments for deck chair fabrics, car upholstery, and doll s hair. Biaxially stretched copolymer films are used for packaging. [Pg.69]


See other pages where Polycarbonate blended with acrylonitrile-butadiene-styrene is mentioned: [Pg.421]    [Pg.421]    [Pg.421]    [Pg.421]    [Pg.2134]    [Pg.387]    [Pg.5981]    [Pg.463]    [Pg.129]    [Pg.2907]    [Pg.327]    [Pg.653]    [Pg.201]    [Pg.327]    [Pg.778]    [Pg.643]    [Pg.278]    [Pg.225]    [Pg.286]    [Pg.513]    [Pg.344]    [Pg.420]    [Pg.160]    [Pg.119]    [Pg.152]    [Pg.183]    [Pg.16]    [Pg.287]    [Pg.317]    [Pg.34]    [Pg.219]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



1,3-Butadiene with styrene

Acrylonitril-butadiene-styrene

Acrylonitrile-butadiene-styrene

Acrylonitrile-butadiene-styrene/polycarbonate blend

Butadiene-acrylonitrile

Polycarbonate blends

Polycarbonate-acrylonitrile-butadiene-styrene

STYRENE-ACRYLONITRILE

Styrene-butadiene

Styrenic blends

© 2024 chempedia.info