Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spatial relationships

The structural feature that Figures 3 2 and 3 3 illustrate is the spatial relationship between atoms on adjacent carbons Each H—C—C—H unit m ethane is characterized by a torsion angle or dihedral angle which is the angle between the H—C—C plane... [Pg.105]

Eclipsed bonds are characterized by a torsion angle of 0° When the torsion angle is approximately 60° we say that the spatial relationship is gauche, and when it is 180° we say that it is anti Staggered conformations have only gauche or anti relationships between bonds on adjacent atoms... [Pg.106]

It IS no accident that sections of our chair cyclohexane drawings resemble saw horse projections of staggered conformations of alkanes The same spatial relationships seen m alkanes carry over to substituents on a six membered ring In the structure... [Pg.119]

Use curved arrows to show the bonding changes in the reaction of CIS 4 tert butylcyclohexyl bromide with potassium tert butoxide Be sure your drawing correctly represents the spatial relationship between the leaving group and the proton that is lost... [Pg.217]

Linker-Scanning Mutagenesis. Using linker-scanning mutagenesis (24) small sequences of DNA are removed and replaced with a synthetic restriction fragment or linker. This technique is commonly used in analysis of promoters and other control sequences in DNA, while preserving the spatial relationship between the sequences. [Pg.237]

The ring opening of 2//-azirines to yield vinylnitrenes on thermolysis, or nitrile ylides on photolysis, also leads to pyrrole formation (B-82MI30301). Some examples proceeding via nitrile ylides are shown in Scheme 92. The consequences of attempts to carry out such reactions in an intramolecular fashion depend not only upon the spatial relationship of the double bond and the nitrile ylide, but also upon the substituents of the azirine moiety since these can determine whether the resulting ylide is linear or bent. The HOMO and second LUMO of a bent nitrile ylide bear a strong resemblance to the HOMO and LUMO of a singlet carbene so that 1,1-cycloadditions occur to carbon-carbon double bonds rather than the 1,3-cycloadditions needed for pyrrole formation. The examples in Scheme 93 provide an indication of the sensitivity of these reactions to structural variations. [Pg.140]

The cross-sectional schematic of Fig. 11.28 illustrates the spatial relationship between the eroded components shown in Figs. 11.6,11.29, and 11.30. [Pg.264]

FIGURE 22.18 Model of the R. viridis reaction center, (a, b) Two views of the ribbon diagram of the reaction center. Mand L subunits appear in purple and blue, respectively. Cytochrome subunit is brown H subunit is green. These proteins provide a scaffold upon which the prosthetic groups of the reaction center are situated for effective photosynthedc electron transfer. Panel (c) shows the spatial relationship between the various prosthetic groups (4 hemes, P870, 2 BChl, 2 BPheo, 2 quinones, and the Fe atom) in the same view as in (b), but with protein chains deleted. [Pg.725]

Examine the structure of bicyclohexane and note the spatial relationships of the various CH and CC bonds. Do all the bonds separating and Ha lie in the same plane ... [Pg.264]

Crystalline 1 1 complex formation can be regarded as molecular recognition in the process of crystallization. Since the formation of a new type of the crystalline 1 1 complex depends on the shapes of R7 and R8 35), the influence of the spatial relationship between R7 and R8 on the complex formation was investigated. [Pg.102]

We know from Section 1.5 that cr bonds are cylindrically symmetrical. In other words, the intersection of a plane cutting through a carbon-carbon singlebond orbital looks like a circle. Because of this cjdindrical symmetry rotation is possible around carbon-carbon bonds in open-chain molecules. In ethane, for instance, rotation around the C-C bond occurs freely, constantly changing the spatial relationships between the hydrogens on one carbon and those on the other (Figure 3.5),... [Pg.93]

Having retraced the remarkably efficient sequences of reactions which led to syntheses of key intermediates 14 and 15, we are now in a position to address their union and the completion of the synthesis of the spiroketal subunit (Scheme 6b). Regiocontrolled deprotonation of hydrazone 14 with lithium diisopropylamide (LDA), prepared from diisopropylamine and halide-free methyl-lithium in ether, furnishes a metalloenamine which undergoes smooth acylation when treated with A-methoxy-A-methylcarboxa-mide 15 to give the desired vinylogous amide 13 in 90% yield. It is instructive to take note of the spatial relationship between the... [Pg.494]

The synthesis of the E-ring intermediate 20 commences with the methyl ester of enantiomerically pure L-serine hydrochloride (22) (see Scheme 9). The primary amino group of 22 can be alkylated in a straightforward manner by treatment with acetaldehyde, followed by reduction of the intermediate imine with sodium borohydride (see 22 —> 51). The primary hydroxyl and secondary amino groups in 51 are affixed to adjacent carbon atoms. By virtue of this close spatial relationship, it seemed reasonable to expect that the simultaneous protection of these two functions in the form of an oxazolidi-none ring could be achieved. Indeed, treatment of 51 with l,l -car-bonyldiimidazole in refluxing acetonitrile, followed by partial reduction of the methoxycarbonyl function with one equivalent of Dibal-H provides oxazolidinone aldehyde 52. [Pg.538]

The quaternary structure - the spatial relationship between the protein chains in a multimeric protein. [Pg.206]

Micro-composites are formed when the polymer chain is unable to intercalate into the silicate layer and therefore phase separated polymer/clay composites are formed. Their properties remain the same as the conventional micro-composites as shown in Figure 2(a). Intercalated nano-composite is obtained when the polymer chain is inserted between clay layers such that the interlayer spacing is expanded, but the layers still bear a well-defined spatial relationship to each other as shown in Figure 2(b). Exfoliated nano-composites are formed when the layers of the day have been completely separated and the individual layers are distributed throughout the organic matrix as shown in Figure 2(c). [Pg.32]

Fig. 10. The putative transition-state complex formed between the Fe protein MgADP AlFj and the MoFe protein. For simplicity only one a/3 pair of subunits of the MoFe protein is shown. The polypeptides are indicated by ribbon diagrams and the metal-sulfur clusters and MgADP AlFi" by space-filling models (MOLSCRIPT (196)). The figure indicates the spatial relationship between the metal-sulfur clusters of the two proteins in the complex. Fig. 10. The putative transition-state complex formed between the Fe protein MgADP AlFj and the MoFe protein. For simplicity only one a/3 pair of subunits of the MoFe protein is shown. The polypeptides are indicated by ribbon diagrams and the metal-sulfur clusters and MgADP AlFi" by space-filling models (MOLSCRIPT (196)). The figure indicates the spatial relationship between the metal-sulfur clusters of the two proteins in the complex.

See other pages where Spatial relationships is mentioned: [Pg.352]    [Pg.2500]    [Pg.313]    [Pg.557]    [Pg.153]    [Pg.541]    [Pg.660]    [Pg.172]    [Pg.217]    [Pg.723]    [Pg.1246]    [Pg.161]    [Pg.92]    [Pg.61]    [Pg.32]    [Pg.351]    [Pg.27]    [Pg.37]    [Pg.70]    [Pg.100]    [Pg.109]    [Pg.142]    [Pg.202]    [Pg.224]    [Pg.270]    [Pg.441]    [Pg.862]    [Pg.249]    [Pg.460]    [Pg.65]    [Pg.27]    [Pg.30]   
See also in sourсe #XX -- [ Pg.88 ]




SEARCH



Binding sites, spatial relationships

Spatial relationship between dopamine release sites and receptors

© 2024 chempedia.info