Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly sensors

Functionalized conducting monomers can be deposited on electrode surfaces aiming for covalent attachment or entrapment of sensor components. Electrically conductive polymers (qv), eg, polypyrrole, polyaniline [25233-30-17, and polythiophene/23 2JJ-J4-j5y, can be formed at the anode by electrochemical polymerization. For integration of bioselective compounds or redox polymers into conductive polymers, functionalization of conductive polymer films, whether before or after polymerization, is essential. In Figure 7, a schematic representation of an amperomethc biosensor where the enzyme is covalendy bound to a functionalized conductive polymer, eg, P-amino (polypyrrole) or poly[A/-(4-aminophenyl)-2,2 -dithienyl]pyrrole, is shown. Entrapment of ferrocene-modified GOD within polypyrrole is shown in Figure 7. [Pg.46]

The optimization of the biorecognition layer by the modification of a transducer used. Nanostmctured poly aniline composite comprising Prussian Blue or poly-ionic polymers has been synthesized and successfully used in the assembly of cholinesterase sensors. In comparison with non-modified sensors, this improved signal selectivity toward electrochemically active species and decreased the detection limits of Chloropyrifos-Methyl and Methyl-Pai athion down to 10 and 3 ppb, respectively. [Pg.295]

In recent years further concepts have been developed for the construction of polymer-based diodes, requiring either two conjugated polymers (PA and poly(A-methyl-pyrrole) 2 > or poly(A-methylpyrrole in a p-type silicon wafer solid-state field-effect transistor By modifying the transistor switching, these electronic devices can also be employed as pH-sensitive chemical sensors or as hydrogen or oxygen sensors 221) in aqueous solutions. Recently a PPy alcohol sensor has also been reported 222). [Pg.34]

It has been demonstrated that dendrimers can be used also as fluorescent sensors for metal ions. Poly(propylene amine) dendrimers functionalized with dansyl units at the periphery like 34 can coordinate metal ions by the aliphatic amine units contained in the interior of the dendrimer [80]. The advantage of a dendrimer for this kind of application is related to the fact that a single analyte can interact with a great number of fluorescent units, which results in signal amplification. For example, when a Co ion enters dendrimer 34, the fluorescence of all the 32 dansyl units is quenched with a 32-fold increase in sensitivity with respect to a normal dansyl sensor. This concept is illustrated in Fig. 3. [Pg.187]

Ferroelectrics Poly(vynidilene fluoride) undergoes electrostriction when subjected to high ac fields, thus can be made into actuators applied pressure produces a piezoelectric response useful in sensors. [Pg.449]

The design of bioeompatible (blood compatible) potentiometric ion sensors was described in this chapter. Sensing membranes fabricated by crosslinked poly(dimethylsiloxane) (silicone rubber) and sol gel-derived materials are excellent for potentiometric ion sensors. Their sensor membrane properties are comparable to conventional plasticized-PVC membranes, and their thrombogenic properties are superior to the PVC-based membranes. Specifically, membranes modified chemically by neutral carriers and anion excluders are very promising, because the toxicity is alleviated drastically. The sensor properties are still excellent in spite of the chemical bonding of neutral carriers on membranes. [Pg.607]

A poly(aniline boronic acid)-based conductimetric sensor for dopamine consisting of an interdigitated microarray electrode coated with poly(aniline boronic acid) has also been developed by the Fabre team. The sensor was found to show a reversible chemoresistive response to dopamine without interference by ascorbic acid from their mixtures.42... [Pg.31]

Kawabata Y., Kamichika T., Imasaka T., Ishibashi N., Fiber-optic sensor for carbon dioxide with a pH indicator dispersed in a poly(ethylene glycol) membrane, Anal. Chim. Acta 1989 219 223. [Pg.41]

Figure 15. Absorbance spectra of dissolved oxidized form of MB (1) and immobilized MB in poly-TMOS sensor layer Li (2). Figure 15. Absorbance spectra of dissolved oxidized form of MB (1) and immobilized MB in poly-TMOS sensor layer Li (2).
Gautier S.M., Blum L.J., Coulet P.R., Cofactor-containing bioluminescent fiber-optic sensor new developments with poly(vinyl) alcohol matrices, Anal. Chim. Acta, 1991 255 253-258. [Pg.177]

American scientists prepared the organo-silica sol-gel membranes60 and demonstrated in a single layer format for pH measurement and multiple-layer format for both C02 and NH3. The sensors used a hydroxypyrenetrisulfonic acid (HPTS) as the indicator immobilizes in a base-catalyzed sol-gel containing poly(dimethyl)siloxane, aminopropyl-triethoxysilane (APTES) and tetraethylorthosilicate (TEOS). This indicator gel was over coated with a hydrophobic sol-gel to reduce cross reactivity to pH when either carbon dioxide or ammonia were examined. [Pg.367]

A strain of yeast and a strain of bacterium were co-immobilized to fabricate a biochemical oxygen demand (BOD) sensor based on sol-gel derived composite materials97. This novel type of biosensor was developed for water monitoring and was used to determine the BOD values of OECD synthetic wastewater, domestic wastewater, and lake waters. The microorganisms Trichosporon cutaneum and Bacillus subtilis were coimmobilized in the sol-gel composite material, which was composed of silica and the grafting copolymer of poly (vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)). [Pg.375]

Yadavalli V.K., Koh W.-G., Lazur G.L., Pishko M.V., Microfabricated protein-containing poly(ethylene glycol) hydrogel arrays for biosensing, Sensors Actuators B 2004 97 290-297. [Pg.500]

C. Malitesta, F. Palmisano, L. Torsi, and P. Zambonin, Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film. Anal. Chem. [Pg.91]

M. Vazquez, J. Bobacka, M. Luostarinen, K. Rissanen, A. Lewenstam, and A. Ivaska, Potentiometric sensors based on poly(3,4-ethylenedioxythiophene) (PEDOT) doped with sulfonated calix[4]arene and calix[4]resorcarenes. J. Solid State Electrochem. 9, 312-319 (2005). [Pg.136]

In practice, some anticoagulation agents such as heparin or antiplatelet agents, e.g. nitric oxide (NO) are delivered to sensor sites in order to reduce the risk of thrombus formation. Nitric oxide (NO), which is a potent inhibitor of platelet adhesion and activation as well as a promoter of wound healing in tissue, has been incorporated in various polymer metrics including PVC (poly(vinyl-chloride)), PDMS (poly-dimethyl-siloxane) and PU (poly-urethanes). Those NO release polymers have been tested in animals as outer protection coatings and have shown promising effects for the analytical response characteristics of the sensor devices [137],... [Pg.312]

Besides, potentiometric sensors with ion-selective ionophores in modified poly(vinyl chloride) (PVC) have been used to detect analytes from human serum [128], Cellular respiration and acidification due to the activity of the cells has been measured with CMOS ISFETS [129], Some potentiometric methods employ gas-sensing electrodes for NH3 (for deaminase reactions) and C02 (for decarboxylase reactions). Ion-selective electrodes have also been used to quantitate penicillin, since the penicillinase reaction may be mediated with I or GST. [Pg.382]

Further improvement of the Prussian blue-based transducer presents two principal problems. First, Prussian blue layers are not mechanically stable, especially on smooth electrode surfaces because of their poly crystalline nature. Second, despite the low electrode potential used, the most powerful reductants like ascorbic acid still interfere with sensor response if present in excessive concentrations. [Pg.444]


See other pages where Poly sensors is mentioned: [Pg.209]    [Pg.191]    [Pg.152]    [Pg.472]    [Pg.135]    [Pg.176]    [Pg.236]    [Pg.586]    [Pg.587]    [Pg.587]    [Pg.596]    [Pg.597]    [Pg.297]    [Pg.114]    [Pg.103]    [Pg.103]    [Pg.119]    [Pg.739]    [Pg.24]    [Pg.27]    [Pg.298]    [Pg.308]    [Pg.124]    [Pg.149]    [Pg.228]    [Pg.382]    [Pg.445]    [Pg.453]    [Pg.494]    [Pg.503]   
See also in sourсe #XX -- [ Pg.572 , Pg.584 ]

See also in sourсe #XX -- [ Pg.486 ]




SEARCH



Case Study II Poly-Si Surface Micromachining and Angular Rate Sensor

Fluorescent optical chemical sensors poly

Preparation of Gas Sensors Based on Poly (pyrrole) Films

Testing the Chemical Sensors Based on Poly(pyrrole)

© 2024 chempedia.info