Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenol and Acetone

Phenol and Acetone. Cumene oxidation is presently the only commercially significant route for the production of phenol.927,971-973 In a two-step process974,975 cumene is first oxidized in an autocatalytic, free-radical reaction to cumene hydroperoxide976 [110, Eq. (9.175)]  [Pg.513]

The oxidation is carried out in the liquid phase, at relatively low temperature (90-120°C), pressure (5-7 atm), and conversion rate (20-40%) to achieve high selectivity. Cumene hydroperoxide is concentrated (70-85%) and then further converted. This second step includes an acid-catalyzed rearrangement and cleavage977 yielding phenol and acetone  [Pg.513]

Phenol can also be prepared by the decomposition of benzoic acid prepared by the oxidation of toluene.927,978 The process is an oxidative decarboxylation catalyzed by copper(II). An interesting feature of this reaction is that the phenolic hydroxyl group enters into the position ortho to the carboxyl group as was proved by 14C labeling.979 In the Dow process980 molten benzoic acid is transformed with steam and air in the presence of Cu(II) and Mg(II) salts at 230-240°C. A copper oxide catalyst is used in a vapor-phase oxidation developed by Lummus.981 [Pg.513]


From cumene Almost all the phenol produced in the United States is prepared by this method Oxi dation of cumene takes place at the benzylic posi tion to give a hydroperoxide On treatment with dilute sulfuric acid this hydroperoxide is converted to phenol and acetone... [Pg.1000]

The most widely used industrial synthesis of phenol is based on isopropylbenzene (cumene) as the starting material and is shown m the third entry of Table 24 3 The eco nomically attractive features of this process are its use of cheap reagents (oxygen and sulfuric acid) and the fact that it yields two high volume industrial chemicals phenol and acetone The mechanism of this novel synthesis forms the basis of Problem 24 29 at the end of this chapter... [Pg.1001]

You learned in Section 17 8 of the relationship among hemiacetals ketones and alcohols the for mation of phenol and acetone is simply an example of hemiacetal hydrolysis The formation of the hemiacetal intermediate is a key step in the synthetic procedure it is the step in which the aryl—oxygen bond is generated Can you suggest a reasonable mechanism for this step" ... [Pg.1023]

Cumene Hydroperoxide Process for Phenol and Acetone. Ben2ene is alkylated to cumene, which is oxidized to cumene hydroperoxide, which ia turn is cleaved to phenol and acetone. [Pg.95]

The yield of acetone from the cumene/phenol process is beUeved to average 94%. By-products include significant amounts of a-methylstyrene [98-83-9] and acetophenone [98-86-2] as well as small amounts of hydroxyacetone [116-09-6] and mesityl oxide [141-79-7]. By-product yields vary with the producer. The a-methylstyrene may be hydrogenated to cumene for recycle or recovered for monomer use. Yields of phenol and acetone decline by 3.5—5.5% when the a-methylstyrene is not recycled (21). [Pg.96]

The most important commercial chemical reactions of phenol are condensation reactions. The condensation reaction between phenol and formaldehyde yields phenoHc resins whereas the condensation of phenol and acetone yields bisphenol A (2,2-bis-(4-hydroxyphenol)propane). PhenoHc resins and bisphenol A [80-05-7] account for more than two-thirds of U.S. phenol consumption (1). [Pg.287]

Cumene Process. There are several Hcensed processes to produce phenol which are based on cumene (qv) (1,8—11). AH of these processes consist of two fundamental chemical reactions cumene is oxidized with air to form cumene hydroperoxide, and cumene hydroperoxide is cleaved to yield phenol and acetone. In this process, approximately 0.46 kg of acetone and 0.75 kg of phenol are produced per kg of cumene feedstock. [Pg.288]

A typical phenol plant based on the cumene hydroperoxide process can be divided into two principal areas. In the reaction area, cumene, formed by alkylation of benzene and propylene, is oxidized to form cumene hydroperoxide (CHP). The cumene hydroperoxide is concentrated and cleaved to produce phenol and acetone. By-products of the oxidation reaction are acetophenone and dimethyl benzyl alcohol (DMBA). DMBA is dehydrated in the cleavage reaction to produce alpha-methylstyrene (AMS). [Pg.288]

The recovery area of the plant employs fractionation to recover and purify the phenol and acetone products. Also in this section the alpha-methylstyrene is recovered and may be hydrogenated back to cumene or recovered as AMS product. The hydrogenated AMS is recycled as feedstock to the reaction area. The overall yield for the cumene process is 96 mol %. Figure 1 is a simplified process diagram. [Pg.288]

Worldwide, approximately 85% of acetone is produced as a coproduct with phenol. The remaining 17% is produced by on-purpose acetone processes such as the hydration of propylene to 2-propanol and the dehydrogenation of 2-propanol to acetone. The cost of production of 2-propanol sets the floor price of acetone as long as the acetone demand exceeds the coproduct acetone supply. However, there is a disparity in the growth rates of phenol and acetone, with phenol demand projected at 3.0%/yr and acetone demand at 2.0%/yr. If this continues, the coproduct supply of acetone will exceed the total acetone demand and on-purpose production of acetone will be forced to shut down the price of acetone is expected to fall below the floor price set by the on-purpose cost production. Projections indicate that such a situation might occur in the world market by 2010. To forestall such a situation, companies such as Mitsui Petrochemical and Shinnippon (Nippon Steel) have built plants without the coproduction of acetone. [Pg.290]

The most widely used process for the production of phenol is the cumene process developed and Hcensed in the United States by AHiedSignal (formerly AHied Chemical Corp.). Benzene is alkylated with propylene to produce cumene (isopropylbenzene), which is oxidized by air over a catalyst to produce cumene hydroperoxide (CHP). With acid catalysis, CHP undergoes controUed decomposition to produce phenol and acetone a-methylstyrene and acetophenone are the by-products (12) (see Cumene Phenol). Other commercial processes for making phenol include the Raschig process, using chlorobenzene as the starting material, and the toluene process, via a benzoic acid intermediate. In the United States, 35-40% of the phenol produced is used for phenoHc resins. [Pg.292]

The oxidation step is similar to the oxidation of cumene to cumene hydroperoxide that was developed earlier and is widely used in the production of phenol and acetone. It is carried out with air bubbling through the Hquid reaction mixture in a series of reactors with decreasing temperatures from 150 to 130°C, approximately. The epoxidation of ethylbenzene hydroperoxide to a-phenylethanol and propylene oxide is the key development in the process. [Pg.484]

Production of a-methylstyrene (AMS) from cumene by dehydrogenation was practiced commercially by Dow until 1977. It is now produced as a by-product in the production of phenol and acetone from cumene. Cumene is manufactured by alkylation of benzene with propylene. In the phenol—acetone process, cumene is oxidized in the Hquid phase thermally to cumene hydroperoxide. The hydroperoxide is spHt into phenol and acetone by a cleavage reaction catalyzed by sulfur dioxide. Up to 2% of the cumene is converted to a-methylstyrene. Phenol and acetone are large-volume chemicals and the supply of the by-product a-methylstyrene is weU in excess of its demand. Producers are forced to hydrogenate it back to cumene for recycle to the phenol—acetone plant. Estimated plant capacities of the U.S. producers of a-methylstyrene are Hsted in Table 13 (80). [Pg.491]

Thioglycohc acid is recommended as a cocatalyst with strong mineral acid in the manufacture of bisphenol A by the condensation of phenol and acetone. The effect of the mercapto group (mercaptocarboxyhc acid) is attributed to the formation of a more stable carbanion intermediate of the ketone that can alkylate the phenol ring faster. The total amount of the by-products is considerably reduced (52). [Pg.6]

Benzene is alkylated with propylene to yield cumene (qv). Cumene is catalytically oxidized in the presence of air to cumene hydroperoxide, which is decomposed into phenol and acetone (qv). Phenol is used to manufacture caprolactam (nylon) and phenoHc resins such as bisphenol A. Approximately 22% of benzene produced in 1988 was used to manufacture cumene. [Pg.49]

AH commercial processes for the manufacture of caprolactam ate based on either toluene or benzene, each of which occurs in refinery BTX-extract streams (see BTX processing). Alkylation of benzene with propylene yields cumene (qv), which is a source of phenol and acetone ca 10% of U.S. phenol is converted to caprolactam. Purified benzene can be hydrogenated over platinum catalyst to cyclohexane nearly aH of the latter is used in the manufacture of nylon-6 and nylon-6,6 chemical intermediates. A block diagram of the five main process routes to caprolactam from basic taw materials, eg, hydrogen (which is usuaHy prepared from natural gas) and sulfur, is given in Eigute 2. [Pg.428]

Donation of a proton to the reactant often forms a carbenium ion or an oxonium ion, which then reacts ia the catalytic cycle. For example, a catalytic cycle suggested for the conversion of phenol and acetone iato bisphenol A, which is an important monomer used to manufacture epoxy resias and polycarbonates, ia an aqueous mineral acid solution is shown ia Figure 1 (10). [Pg.162]

Fig. 1. Catalytic cycle for synthesis of bisphenol A from phenol and acetone in the presence of a dissociated mineral acid (10). Fig. 1. Catalytic cycle for synthesis of bisphenol A from phenol and acetone in the presence of a dissociated mineral acid (10).
Since both phenol and acetone are available and the bis-phenol A is easy to manufacture, this intermediate is comparatively inexpensive. This is one of the reasons why it has been the preferred dihydric phenol employed in epoxide resins manufacture. Since most epoxide resins are of low molecular weight and because... [Pg.745]

Propylene could be used as an alkylating agent for aromatics. An important reaction with great commercial use is the alkylation of benzene to cumene for phenol and acetone production. The reaction is discussed in Chapter 10. [Pg.235]

The 1998 U.S. cumene production was approximately 6.7 hillion pounds and was mainly used to produce phenol and acetone. A small amount of cumene is used to make a-methylstyrene hy dehydrogenation. [Pg.270]

Chemicals Based on Benzene, Toluene, and Xylenes 271 Phenol and Acetone from Cumene... [Pg.271]

In the second step, the hydroperoxide is decomposed in the presence of an acid to phenol and acetone. The reaction conditions are approximately 80°C and slightly below atmospheric ... [Pg.271]

Figure 10-6. The Mitsui Petrochemical Industries process for producing phenol and acetone from cumene (1) autooxidatlon reactor, (2) vacuum tower, (3) cleavage reactor, (4) neutralizer, (5-11 ) purification train. Figure 10-6. The Mitsui Petrochemical Industries process for producing phenol and acetone from cumene (1) autooxidatlon reactor, (2) vacuum tower, (3) cleavage reactor, (4) neutralizer, (5-11 ) purification train.
After an initial distillation to split the coproducts phenol and acetone, each is purified in separate distillation and treating trains. An acetone finishing column distills product acetone from an acetone/water/oil mixture. The oil, which is mostly unreacted cumene, is sent to cumene recovery. Acidic impurities, such as acetic acid and phenol, are neutralized hy caustic injection. Figure 10-7 is a simplified flow diagram of an acetone finishing column, and Table 10-1 shows the feed composition to the acetone finishing column. [Pg.272]

Phenol was the 33rd highest-volume chemical. The 1994 U.S. production of phenol was approximately 4 billion pounds. The current world capacity is approximately 15 billion pounds. Many chemicals and polymers derive from phenol. Approximately 50% of production goes to phenolic resins. Phenol and acetone produce bis-phenol A, an important monomer for epoxy resins and polycarbonates. It is produced by condensing acetone and phenol in the presence of HCI, or by using a cation exchange resin. Figure 10-8 shows the Chiyoda Corp. bisphenol A process. [Pg.273]

Make Useful Coproducts. The success of this approach to process development is heavily dependent on the market situation but in suitable cases where there is market demand for the total output of both products such processes can be successful. Examples here are the coproduction of phenol and acetone, which is essentially noncatalytic, and the more recently developed process for the cooxidation of ethyl benzene and propylene to produce propylene oxide and styrene. [Pg.241]

The most common precursor to phenolic resins is phenol. More than 95% of phenol is produced via the cumene process developed by Hock and Lang (Fig. 7.1). Cumene is obtained from the reaction of propylene and benzene through acid-catalyzed alkylation. Oxidation of cumene in air gives rise to cumene hydroperoxide, which decomposes rapidly at elevated temperatures under acidic conditions to form phenol and acetone. A small amount of phenol is also derived from coal. [Pg.376]

For commercial application, diepoxides such as those derived from bisphenol A are employed, and they are cured via ring-opening crosslinking reactions, into which the epoxy group enters readily. Bisphenol A is so-called because it is formed from two moles of phenol and acetone (Reaction 1.7). [Pg.13]

Almost all of the isopropylbenzene produced is used for making phenol and acetone. The largest use of acetone is as a chemical intermediate to methyl methacrylate and along with phenol to make bisphenol A for preparation of polymers. Acetone is also used widely as a solvent. [Pg.130]

Method and device for production of phenol and acetone by means of acid-catalyzed, homogeneous decoposition of cumd-hydroperoxid, WO 01/30732, Phenol-chemie GmbH, Priority 22.10.99. [Pg.115]

Here, cumene hydroperoxide is rearranged to provide phenol and acetone via acid cleavage. [Pg.539]

Miller et al. (1981) studied the kinetics of the reaction of phenol and acetone to bisphenol A in the presence of hydrogen chloride (see Fig. 5.4-31) in an isothermal batch reactor. [Pg.316]

A very similar rearrangement takes place during the acid-catalysed decomposition of hydroperoxides, RO—OH, where R is a secondary or tertiary carbon atom carrying alkyl or aryl groups. A good example is the decomposition of the hydroperoxide (84) obtained by the air-oxidation of cumene [(l-methylethyl)benzene] this is used on the large scale for the preparation of phenol and acetone ... [Pg.128]

Acids are well known as efficient catalysts of various heterolytic reactions (hydrolysis, esterification, enolyzation, etc. [225,226]). They catalyze the heterolytic decay of hydroperoxides formed during oxidation. For example, they catalyze the decomposition of cumyl hydroperoxide into phenol and acetone (important technological reaction) [5]. [Pg.414]

The reactions of sulfides with ROOH give rise to products that catalyze the decomposition of hydroperoxides [31,38-47]. The decomposition is acid-catalyzed, as can be seen from the analysis of the resulting products cumyl hydroperoxide gives rise to phenol and acetone, while 1,1-dimethylethyl hydroperoxide gives rise to 1,1-dimethylethyl peroxide, where all the three are the products of acid-catalyzed decomposition [46-49]. It is generally accepted that the intermediate catalyst is sulfur dioxide, which reacts with ROOH as an acid [31,46-50]. [Pg.602]

CD-Cumene A process for making cumene for subsequent conversion to phenol and acetone. The cumene is made by catalytic alkylation of benzene with propylene in a catalytic distillation reactor. Developed in 1995 by CDTech. [Pg.58]


See other pages where Phenol and Acetone is mentioned: [Pg.40]    [Pg.174]    [Pg.629]    [Pg.629]    [Pg.377]    [Pg.42]    [Pg.67]    [Pg.128]   


SEARCH



© 2024 chempedia.info